

Contents

Experimental Approaches to the Study of Charge and Energy Transfer in Biomolecular and Intact Cellular Systems

Fresh Approaches and New Surprises with Iron-Sulfer Clusters	3
<i>F.V. Fraser, Julea Butt, Jacques Breton, and Andrew J. Thomson</i>	
Electrochemical Control of Protein Interactions with Solid Surfaces	13
<i>Alexander N. Asanov and Ludmila L. Larina</i>	
The Direct Electron Transfer Reactions of Cytochrome Oxidase Immobilized into a Membrane Modified Electrode	29
<i>John K. Cullison, Fred M. Hawridge, Naotoshi Nakashima, and Charles R. Hartzell</i>	
Thermodynamic and Electrochemical Studies of the Electron Transfer Reactions of Hemoglobin	41
<i>Jennifer L. Detrich, Gabriel A. Erb, David A. Beres, and Lyman H. Rickard</i>	
The Effect of Adsorbed Iodine on the Electrical Conductivity of Phospholipid Films	53
<i>Gordon L. Jendrasiak, Thomas J. McIntosh, Gregory E. Madison, and Ralph Smith</i>	
The Molecular Electrostatics of Glycosphingolipids in Oriented Interfaces	69
<i>Bruno Maggio</i>	
Direct Energetic Interaction of Ion Transport Systems in Bacterial Membrane	81
<i>Armen A. Trchounian</i>	
Ion and Electron Transport Properties of Biological and Artificial Membranes	
Electronic Behavior Differences in Muscle Membranes	93
<i>Milton J. Allen</i>	

The Homeostatic Effect of Electronically Non-Compensated Hydroxyl (OH-), (Negative Hydroairions) on Phosphorylating Respiration in Highly Native Mitochondria.....	103
<i>Andrew Babsky, Elena Grigorinko, Elena Okon, and Marie Kondrashova</i>	
Selection Rules of Helicity During Discrete Transitions of the Genome Conformational State in Intact and X-rayed Cells of <i>E. Coli</i> in Millimeter Range of Electromagnetic Field.....	115
<i>I.Ya. Belyaev, V.S. Shcheglov, and Ye.D. Alipov</i>	
Visualization of Ionic Channels in a Lipid Membrane by Means of a Scanning Tunnelling Microscope and Future Possibilities for Application.....	127
<i>Oleg V. Kolomytkin, Alexander O. Golubok, Serge Y. Tipisev, and Svetlana A. Vinogradova</i>	
Study of the Influence of the Side Chain Dipoles of the Conductance of Ion Channels Formed by Gramacidin Analogues.....	139
<i>Genoveva Martinez, Miguel Sancho, and Victoria Fonseca</i>	
Idealized Model of Coupled Processes in Mitochondrial Proton Transfer	153
<i>Tofik M. Nagiev</i>	
Channel Gating by Divalent Cations and Protons.....	165
<i>C.A. Pasternak</i>	
Charge Transfer Effect on Coelomic Cells in Exalted Bioluminescence of <i>Lampito Mauritii</i>	169
<i>K.S.V. Santhanam and N.M. Limaye</i>	
Emulsion Bioelectrochemistry: Bacteriorhodopsin Phototransfer of Protons Through the Interface Water/Lipid in Octane.....	191
<i>Alexander G. Volkov, Maya I. Gugeshashvili, Vladimir I. Portnov, Vladislav S. Markin, and L.N. Chekulaeva</i>	
Effects of Electrochemical Processes and Electromagnetic Fields on Biological Systems	
Cellular Effects of Extremely Low Frequency Electromagnetic Fields (ELF).....	203
<i>Stephen F. Cleary, Li-Ming Liu, and Guanghui Cao</i>	
Electropemeabilization of Human Cultured Cells Grown in Monolayers II. Control of Cell Proliferation and DNA-Replication.....	217
<i>S. Kwee, B. Gesser, and J. Celis</i>	
Extremely Weak AC and DC Magnetic Fields Significantly Affect Myosin Phosphorylation.....	225
<i>M.S. Markov, J.T. Ryaby, J.J. Kaufman, and A.A. Pilla</i>	

The Sensitivity of Cells and Tissues to Weak Electromagnetic Fields	231
<i>A.A. Pilla, P.R. Nassar, and J.J. Kauffman</i>	
Successful Gene Transfer in Plants using Electroporation and Electrofusion	243
<i>James A. Saunders, Sally L. Van Wert, Camelia Rhodes Smith, Benjamin F. Matthews, and Stephen Sinden</i>	
Effects of Ion Resonance Tuned Magnetic Fields on N-18 Murine Neuroblastoma Cells	263
<i>Stephen D. Smith, Abraham R. Liboff, Bruce McLeod, and Elsie J. Barr</i>	
Exact Solutions of a Stochastic Model of Electroporation	273
<i>Istvan P. Sugar</i>	
Time Course of Electroporabilization	285
<i>Justin Teissié</i>	
Electronic Structure and Magnetic Circular Dichroism Studies of Proton Transfer by Histidine	303
<i>Nancy R. Zhang, Sharon R. Cutler, John A. Kroll, Loyde F. Jones, and Donald D. Shillady</i>	
Photo-Induced Bioelectrochemical Processes	
Flavin Laser Flash Photolysis Studies of the Electron Transfer Mechanism in Redox Proteins	319
<i>Miguel A. De la Rosa, José A. Navarro, Mercedes Roncel, Antonio Díaz, Manuel Hervás, and Gordon Tollin</i>	
Characterization of Charge Separation in Membrane Spinning Protein Reaction Centers of Bacterial Photosynthesis	333
<i>Theodore J. DiMagno, Chi-Kin Chan, Deborah K. Hanson, Marianne Schiffer, Graham R. Fleming, and James R. Norris</i>	
The Interaction of the Photoreceptor Cells with the Constant Electrical Field	341
<i>Eugenio Chirieri-Kovacs, Alexandru Dinu, and Tudor Savapol</i>	
Resonance Raman Spectroscopy with Near Ultraviolet Excitation of Peroxidase Intermediates in High Oxidation States	349
<i>V. Palaniappan, Ann M. Sullivan, Melissa M. Fitzgerald, John R. Shifflett, and James Terner</i>	
Photorespiration of the Monolayers of Hydrated Chlorophyll-A Oligomer	365
<i>Alexander G. Volkov, Maya I. Gugeshvili, Gaeton Munger, and Roger M. Leblanc</i>	

Applications of Bioelectrochemical Technology

The Coaxial-Pore Mechanism of Cell Membrane Electrofusion: Theory and Experiment	375
<i>Iziaslav G. Abidor and Arthur E. Sowers</i>	
Effect of Paramagnetic Lanthanide (III) Complexes of a Six-Nitrogen Macroyclic Ligand on the Aqueous NMR Spectra of Amino Acids	411
<i>K.K. Fonda, J. Kroll, D.D. Shillady, and L.M. Vallarino</i>	
Model System for the Study of Gonorrhea Created by Cell-Tissue Electrofusion	417
<i>Richard Heller and Richard Gilbert</i>	
NMR Studies of the Interaction of Catechol and Ascorbic Acid with Poly(N-Vinylpyrrolidone) Polymer	433
<i>George P. Kreishman, Helen J. Johnson, Toshihiko Imato, and William R. Heineman</i>	
Frequency and Amplitude Dependence on the Effect of a Weak Oscillating Field on Biological Systems	439
<i>Baldwin Robertson and R. Dean Astumian</i>	
Large Volume Cell Electroporation and Electrofusion by a Flow Cell Process	449
<i>Justin Teissié, Sophie Sixou, and Marie Pierre Rols</i>	
Electric Field Induced Asymmetric Breakdown of Cell Membranes	467
<i>Ephrem Tekle, P. Boon Chock, and R. Dean Astumian</i>	
Membrane Electroconformational Changes: Progress in Theoretical Modelling of Electroporation and of Protein Protrusion Alteration	477
<i>James C. Weaver</i>	
Electrofusion Yield Modified by Membrane-Active Substances	497
<i>Lei Zhang and Hermann Berg</i>	