Contents

Pre	zjace	(V 11
Int	roduction	1
	I CLASSICAL ELECTRODYNAMICS: THE FUNDAMENTAL EQUATIONS AND THE DYNAMICAL VARIABLES	
Int	roduction	5
A.	The Fundamental Equations in Real Space	7
	1. The Maxwell-Lorentz Equations	7
	2. Some Important Constants of the Motion	8
	3. Potentials—Gauge Invariance	8
B.	Electrodynamics in Reciprocal Space	11
	1. The Fourier Spatial Transformation—Notation	11
	2. The Field Equations in Reciprocal Space	12
	3. Longitudinal and Transverse Vector Fields	13
	4. Longitudinal Electric and Magnetic Fields	15
	5. Contribution of the Longitudinal Electric Field to the Total Energy, to	
	the Total Momentum, and to the Total Angular Momentum—a. The	
	Total Energy. b. The Total Momentum. c. The Total Angular Momentum	17
	6. Equations of Motion for the Transverse Fields	21
C.	Normal Variables	23
	1. Introduction	23
	2. Definition of the Normal Variables	23
	3. Evolution of the Normal Variables	24
	4. The Expressions for the Physical Observables of the Transverse Field	
	as a Function of the Normal Variables—a. The Energy H _{trans} of the	
	Transverse Field. b. The Momentum P _{trans} and the Angular Momen-	
	tum J _{trans} of the Transverse Field. c. Transverse Electric and Magnetic	
	Fields in Real Space. d. The Transverse Vector Potential $\mathbf{A}_{\perp}(\mathbf{r},t)$	26

VI Contents

	5. Similarities and Differences between the Normal Variables and the Wave Function of a Spin-1 Particle in Reciprocal Space6. Periodic Boundary Conditions. Simplified Notation	30 31
D.	Conclusion: Discussion of Various Possible Quantization Schemes 1. Elementary Approach 2. Lagrangian and Hamiltonian Approach	33 33 34
	Complement A _I —The "Transverse" Delta Function	
	Definition in Reciprocal Space—a. Cartesian Coordinates. Transverse and Longitudinal Components. b. Projection on the Subspace of Transverse	
2.	Fields	36
	Derivatives of $g(\rho)$. d. Discussion of the Expression for $\delta_{ij}^{\perp}(\rho)$	38
	Application to the Evaluation of the Magnetic Field Created by a Magnetization Distribution. Contact Interaction	42
	Complement B_1 —Angular Momentum of the Electromagnetic Field. Multipole Waves	
In	troduction	45
1.	Contribution of the Longitudinal Electric Field to the Total Angular Momentum	45
2.	Angular Momentum of the Transverse Field—a. J_{trans} in Reciprocal Space. b. J_{trans} in Terms of Normal Variables. c. Analogy with the Mean Value of	
3.	the Total Angular Momentum of a Spin-1 Particle	47
	a. General Idea. b. Method for Constructing Vector Eigenfunctions for J^2 and J_2 . c. Longitudinal Eigenfunctions. d. Transverse Eigenfunctions.	51
4.	Application: Multipole Waves in Real Space—a. Evaluation of Some Fourier Transforms. b. Electric Multipole Waves. c. Magnetic Multipole Waves	55
	COMPLEMENT C _I —EXERCISES	
2.	H and P as Constants of the Motion	61 63
	Transverse Field	64

Contents	VII
 Normal Variables and Retarded Potentials Field Created by a Charged Particle at Its Own Position. Radiation Reaction Field Produced by an Oscillating Electric Dipole Cross-section for Scattering of Radiation by a Classical Elastically Bound Electron 	66 68 71 74
II LAGRANGIAN AND HAMILTONIAN APPROACH TO ELECTRODYNAMICS. THE STANDARD LAGRANGIAN AND THE COULOMB GAUGE	
Introduction	79
A. Review of the Lagrangian and Hamiltonian Formalism	81
nian in Quantum Mechanics. 2. A System with a Continuous Ensemble of Degrees of Freedom— a. Dynamical Variables. b. The Lagrangian. c. Lagrange's Equations d. Conjugate Momenta and the Hamiltonian. e. Quantization. f. Lagrangian Formalism with Complex Fields. g. Hamiltonian Formalism and Quantization with Complex Fields.	90
B. The Standard Lagrangian of Classical Electrodynamics	100
Space	100
Equation Relative to the Vector Potential	103105
 C. Electrodynamics in the Coulomb Gauge 1. Elimination of the Redundant Dynamical Variables from the Standard Lagrangian—a. Elimination of the Scalar Potential. b. The Choice of 	111
the Longitudinal Component of the Vector Potential	111 113

VIII Contents

	 Hamiltonian Formalism—a. Conjugate Particle Momenta. b. Conjugate Momenta for the Field Variables. c. The Hamiltonian in the Coulomb Gauge. d. The Physical Variables. Canonical Quantization in the Coulomb Gauge—a. Fundamental Commutation Relations. b. The Importance of Transversability in the Case of the Electromagnetic Field. c. Creation and Annihilation Operators. Conclusion: Some Important Characteristics of Electrodynamics in the Coulomb Gauge—a. The Dynamical Variables Are Independent. 	115
	b. The Electric Field Is Split into a Coulomb Field and a Transverse Field. c. The Formalism Is Not Manifestly Covariant. d. The Interaction of the Particles with Relativistic Modes Is Not Correctly Described	121
	COMPLEMENT A _{II} —FUNCTIONAL DERIVATIVE. INTRODUCTION AND A FEW APPLICATIONS	
2. 3. 4.	From a Discrete to a Continuous System. The Limit of Partial Derivatives	126 128 128 130 132
	Complement B_{II} —Symmetries of the Lagrangian in the Coulomb Gauge and the Constants of the Motion	
2. 3. 4.	The Variation of the Action between Two Infinitesimally Close Real Motions	134 136 137 138 139
	Complement C_{11} —Electrodynamics in the Presence of an External Field	
2.	Separation of the External Field	141 142
	Momenta. b. The Hamiltonian. c. Quantization	143

Contents	IX
----------	----

COMPLEMENT D_{II}—Exercises

	An Example of a Hamiltonian Different from the Energy	146
2.	From a Discrete to a Continuous System: Introduction of the Lagrangian and Hamiltonian Densities	147
3.	Lagrange's Equations for the Components of the Electromagnetic Field in	17/
	Real Space	150
4.	Lagrange's Equations for the Standard Lagrangian in the Coulomb Gauge	151
5.	Momentum and Angular Momentum of an Arbitrary Field	152
6.	A Lagrangian Using Complex Variables and Linear in Velocity	154
7.	Lagrangian and Hamiltonian Descriptions of the Schrödinger Matter Field	157
8.	Quantization of the Schrödinger Field	161
9.	Schrödinger Equation of a Particle in an Electromagnetic Field: Arbitrari-	
	ness of Phase and Gauge Invariance	167

III QUANTUM ELECTRODYNAMICS IN THE COULOMB GAUGE

Inti	roauction	109
A.	The General Framework	171
	 Fundamental Dynamical Variables. Commutation Relations The Operators Associated with the Various Physical Variables of the 	171
	System	171
	3. State Space	175
B.	Time Evolution	176
	1. The Schrödinger Picture	176
	2. The Heisenberg Picture. The Quantized Maxwell-Lorentz Equations—a. The Heisenberg Equations for Particles. b. The Heisenberg Equations for Fields. c. The Advantages of the Heisenberg Point of	
	View	176
C.	Observables and States of the Quantized Free Field	183
	1. Review of Various Observables of the Free Field—a. Total Energy	
	and Total Momentum of the Field. b. The Fields at a Given Point r of	
	Space. c. Observables Corresponding to Photoelectric Measurements.	183
	2. Elementary Excitations of the Quantized Free Field. Photons—	

X Contents

 b. The Interpretation in Terms of Photons. c. Single-Photon State Propagation	186 ean 189 etes. s of
D. The Hamiltonian for the Interaction between Particles and Fields	197
1. Particle Hamiltonian, Radiation Field Hamiltonian, Interact Hamiltonian	197
2. Orders of Magnitude of the Various Interactions Terms for System Bound Particles	
3. Selection Rules	
4. Introduction of a Cutoff	
Complement A _{III} —The Analysis of Interference Phenome in the Quantum Theory of Radiation	ENA
Introduction	204
 A Simple Model Interference Phenomena Observable with Single Photodetection Signal The General Case. Quasi-classical States. Factored States. 	ites.
3. Interference Phenomena Observable with Double Photodetect Signals—a. Quasi-classical States. b. Single-Photon States. c. T. Photon States.	ion wo-
4. Physical Interpretation in Terms of Interference between Transition Applitudes	∖m-
5. Conclusion: The Wave-Particle Duality in the Quantum Theory of Ration	dia-
Complement B _{III} —Quantum Field Radiated by Classical Sources	
Assumptions about the Sources	217
3. The Schrödinger Point of View. The Quantum State of the Field Time t	

Contents	XI
----------	----

Complement $C_{\rm III}$ —Commutation Relations for Free Fields at Different Times. Susceptibilities and Correlation Functions of the Fields in the Vacuum	
Introduction	221
 Preliminary Calculations	222
tators	223 227
COMPLEMENT D _{III} —Exercises	
 Commutators of A, E₁, and B in the Coulomb Gauge Hamiltonian of a System of Two Particles with Opposite Charges Coupled 	230
to the Electromagnetic Field	232
3. Commutation Relations for the Total Momentum P with H_P , H_R , and H_I	233
4. Bose-Einstein Distribution	234
5. Quasi-Probability Densities and Characteristic Functions	236
6. Quadrature Components of a Single-Mode Field. Graphical Representa-	
tion of the State of the Field	241
	246
7. Squeezed States of the Radiation Field	
8. Generation of Squeezed States by Two-Photon Interactions	248
9. Quasi-Probability Density of a Squeezed State	250
IV	
OTHER EQUIVALENT FORMULATIONS OF ELECTRODYNAMICS	
Introduction	253
A. How to Get Other Equivalent Formulations of Electrodynamics	255
1. Change of Gauge and of Lagrangian	255
2. Changes of Lagrangian and the Associated Unitary Transformation—a. Changing the Lagrangian. b. The Two Quantum Descriptions. c. The Correspondence between the Two Quantum Descriptions.	233
d. Application to the Electromagnetic Field	256
Different Formulations of Quantum Electrodynamics	262

XII Contents

В.	Simple Examples Dealing with Charges Coupled to an External Field	266
	1. The Lagrangian and Hamiltonian of the System	266
	2. Simple Gauge Change; Gauge Invariance—a. The New Description.	
	b. The Unitary Transformation Relating the Two Descriptions—Gauge	
	Invariance	267
	3. The Göppert-Mayer Transformation—a. The Long-Wavelength Ap-	
	proximation. b. Gauge Change Giving Rise to the Electric Dipole	
	Interaction. c. The Advantages of the New Point of View. d. The	
	Equivalence between the Interaction Hamiltonians A · p and E · r.	
	e. Generalizations	269
	e. Generalizations	
	Lagrangian: The Henneberger Transformation—a. Motivation. b. De-	
	termination of the Unitary Transformation. Transforms of the Various	
	Operators. c. Physical Interpretation. d. Generalization to a Quan-	
	tized Field: The Pauli-Fierz-Kramers Transformation	275
C.	The Power-Zienau-Woolley Transformation: The Multipole Form of the	
C.	Interaction between Charges and Field	280
	1. Description of the Sources in Terms of a Polarization and a Magneti-	200
	zation Density—a. The Polarization Density Associated with a System	
	of Charges. b. The Displacement. c. Polarization Current and Mag-	
	netization Current	280
	2. Changing the Lagrangian—a. The Power-Zienau-Woolley Transfor-	200
	mation. b. The New Lagrangian. c. Multipole Expansion of the In-	
	teraction between the Charged Particles and the Field	286
	3. The New Conjugate Momenta and the New Hamiltonian—a. The	200
	Expressions for These Quantities. b. The Physical Significance of the	
	New Conjugate Momenta. c. The Structure of the New Hamiltonian	289
	4. Quantum Electrodynamics from the New Point of View—a. Quanti-	207
	zation. b. The Expressions for the Various Physical Variables	293
	5. The Equivalence of the Two Points of View. A Few Traps to Avoid	296
	J. The Equivalence of the Two Folias of View. A Tew Traps to Avoid	270
D.		298
	1. Introduction of the S-Matrix	298
	2. The S-Matrix from Another Point of View. An Examination of the	
	Equivalence	300
	3. Comments on the Use of the Equivalence between the S-Matrices	302
	COMPLEMENT A _{IV} —ELEMENTARY INTRODUCTION	
	TO THE ELECTRIC DIPOLE HAMILTONIAN	
		20.4
Int	troduction	304
1	The Electric Dipole Hamiltonian for a Localized System of Charges	
	Coupled to an External Field—a. The Unitary Transformation Suggested	

ontents	XII
ontents	XI

by the Long-Wavelength Approximation. b. The Transformed Hamiltonian.	
c. The Velocity Operator in the New Representation	304
3. Extensions—a. The Case of Two Separated Systems of Charges. b. The Case of a Quantized Field Coupled to Classical Sources	312
Complement B_{IV} —One-Photon and Two-Photon Processes: The Equivalence between the Interaction Hamiltonians $\mathbf{A} \cdot \mathbf{p}$ and $\mathbf{E} \cdot \mathbf{r}$	
Introduction	316
 Notations. Principles of Calculations	316
c. Direct Verification of the Identity of the Two Amplitudes	317 325
Complement C_{IV} —Interaction of Two Localized Systems of Charges from the Power–Zienau–Woolley Point of View	
Introduction	328
1. Notation	328 329
Complement D_{IV} —The Power–Zienau–Woolley Transformation and the Poincaré Gauge	
Introduction	331
1. The Power-Zienau-Woolley Transformation Considered as a Gauge	
Change	331 332 333

XIV Contents

Complement E_{IV} —Exercises

	Potential	336
2.	Two-Photon Excitation of the Hydrogen Atom. Approximate Results	
•	Obtained with the Hamiltonians A · p and E · r	338
	The Electric Dipole Hamiltonian for an Ion Coupled to an External Field	342
	Scattering of a Particle by a Potential in the Presence of Laser Radiation The Equivalence between the Interaction Hamiltonians $A \cdot p$ and $Z \cdot (\nabla V)$	344
٦.	for the Calculation of Transition Amplitudes \dots	349
6.	Linear Response and Susceptibility. Application to the Calculation of the	לדכ
	Radiation from a Dipole	352
7.	Nonresonant Scattering. Direct Verification of the Equality of the Transi-	
	tion Amplitudes Calculated from the Hamiltonians $\mathbf{A} \cdot \mathbf{p}$ and $\mathbf{E} \cdot \mathbf{r}$	356
	V INTRODUCTION TO THE COVARIANT FORMULATION OF QUANTUM ELECTRODYNAMICS	
In	troduction	361
4,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	201
A .	Classical Electrodynamics in the Lorentz Gauge 1. Lagrangian Formalism—a. Covariant Notation. Ordinary Notation. b. Selection of a New Lagrangian for the Field. c. Lagrange Equations for the Field. d. The Subsidiary Condition. e. The Lagrangian Density in Reciprocal Space 2. Hamiltonian Formalism—a. Conjugate Momenta of the Potentials. b. The Hamiltonian of the Field. c. Hamilton-Jacobi Equations for	364 364 369
	Classical Electrodynamics in the Lorentz Gauge 1. Lagrangian Formalism—a. Covariant Notation. Ordinary Notation. b. Selection of a New Lagrangian for the Field. c. Lagrange Equations for the Field. d. The Subsidiary Condition. e. The Lagrangian Density in Reciprocal Space 2. Hamiltonian Formalism—a. Conjugate Momenta of the Potentials.	364 364
	Classical Electrodynamics in the Lorentz Gauge 1. Lagrangian Formalism—a. Covariant Notation. Ordinary Notation. b. Selection of a New Lagrangian for the Field. c. Lagrange Equations for the Field. d. The Subsidiary Condition. e. The Lagrangian Density in Reciprocal Space 2. Hamiltonian Formalism—a. Conjugate Momenta of the Potentials. b. The Hamiltonian of the Field. c. Hamilton—Jacobi Equations for the Free Field 3. Normal Variables of the Classical Field—a. Definition. b. Expansion of the Potential in Normal Variables. c. Form of the Subsidiary Condition for the Free Classical Field. Gauge Arbitrariness. d. Expression of the Field Hamiltonian Difficulties Raised by the Quantization of the Free Field 1. Canonical Quantization—a. Canonical Commutation Relations.	364 364 369
A.	Classical Electrodynamics in the Lorentz Gauge 1. Lagrangian Formalism—a. Covariant Notation. Ordinary Notation. b. Selection of a New Lagrangian for the Field. c. Lagrange Equations for the Field. d. The Subsidiary Condition. e. The Lagrangian Density in Reciprocal Space 2. Hamiltonian Formalism—a. Conjugate Momenta of the Potentials. b. The Hamiltonian of the Field. c. Hamilton-Jacobi Equations for the Free Field 3. Normal Variables of the Classical Field—a. Definition. b. Expansion of the Potential in Normal Variables. c. Form of the Subsidiary Condition for the Free Classical Field. Gauge Arbitrariness. d. Expression of the Field Hamiltonian Difficulties Raised by the Quantization of the Free Field	364364369371

	Contents	ΧV
C.	Covariant Quantization with an Indefinite Metric 1. Indefinite Metric in Hilbert Space 2. Choice of the New Metric for Covariant Quantization 3. Construction of the Physical Kets 4. Mean Values of the Physical Variables in a Physical Ket—a. Mean Values of the Potentials and the Fields. b. Gauge Arbitrariness and Arbitrariness of the Kets Associated with a Physical State. c. Mean Value of the Hamiltonian	387 387 390 393
D.	A Simple Example of Interaction: A Quantized Field Coupled to Two Fixed External Charges	400 400
	Charges. c. Exact Calculation	401 405 407
	Complement A_v —An Elementary Introduction to the Theory of the Electron–Positron Field Coupled to the Photon Field in the Lorentz Gauge	7
In	troduction	408
1.	A Brief Review of the Dirac Equation—a. Dirac Matrices. b. The Dirac Hamiltonian. Charge and Current Density. c. Connection with the Covariant Notation. d. Energy Spectrum of the Free Particle. e. Negative-	400
2.	Energy States. Hole Theory	408
3.	Translations	414
	Interaction	418

XVI Contents

Complement B_{ν} —Justification of the Nonrelativistic Theory in the Coulomb Gauge Starting from Relativistic Quantum Electrodynamics

Introduction		
1. Transition from the Lorentz Gauge to the Coulomb Gauge in Relativis Quantum Electrodynamics—a. Transformation on the Scalar Photo Yielding the Coulomb Interaction. b. Effect of the Transformation on to Other Terms of the Hamiltonian in the Lorentz Gauge. c. Subsidiary Contion. Absence of Physical Effects of the Scalar and Longitudinal Photo d. Conclusion: The Relativistic Quantum Electrodynamics Hamiltonian in Coulomb Gauge	ons the di- ns. the	
2. The Nonrelativistic Limit in Coulomb Gauge: Justification of the Pa Hamiltonian for the Particles—a. The Dominant Term H_0 of the Hamiltonian in the Nonrelativistic Limit: Rest Mass Energy of the Particles. b. The Effective Hamiltonian inside a Manifold. c. Discussion	uli Ito- The	
Complement C _v —Exercises		
·		
 Other Covariant Lagrangians of the Electromagnetic Field Annihilation and Creation Operators for Scalar Photons: Can One Int 		
change Their Meanings?		
 Some Properties of the Indefinite Metric Translation Operator for the Creation and Annihilation Operators of 	445 fa	
Scalar Photon		
Dirac Field and the Gauge of the Electromagnetic Field		
6. The Lagrangian and Hamiltonian of the Coupled Dirac and Maxw		
Fields		
7. Dirac Field Operators and Charge Density. A Study of Some Commution Relations		
References	457	
Index	459	