Contents

Preface XIII
List of Contributors XVII

1	An Introduction to Nonequilibrium Plasmas at Atmospheric		
	Pressure 1		
	Sander Nijdam, Eddie van Veldhuizen, Peter Bruggeman, and Ute Ebert		
1.1	Introduction 1		
1.1.1	Nonthermal Plasmas and Electron Energy Distributions 1		
1.1.2	Barrier and Corona Streamer Discharges - Discharges at		
	Atmospheric Pressure 2		
1.1.3	Other Nonthermal Discharge Types 3		
1.1.3.1	Transition to Sparks, Arcs, or Leaders 4		
1.1.4	Microscopic Discharge Mechanisms 4		
1.1.4.1	Bulk Ionization Mechanisms 4		
1.1.4.2	Surface Ionization Mechanisms 6		
1.1.5	Chemical Activity 6		
1.1.6	Diagnostics 8		
1.2	Coronas and Streamers 9		
1.2.1	Occurrence and Applications 9		
1.2.2	Main Properties of Streamers 11		
1.2.3	Streamer Initiation or Homogeneous Breakdown 14		
1.2.4	Streamer Propagation 15		
1.2.4.1	Electron Sources for Positive Streamers 15		
1.2.5	Initiation Cloud, Primary, Secondary, and Late Streamers 16		
1.2.6	Streamer Branching and Interaction 18		
1.3	Glow Discharges at Higher Pressures 20		
1.3.1	Introduction 20		
1.3.2	Properties 21		
1.3.3	Studies 22		
1.3.4	Instabilities 25		
1.4	Dielectric Barrier and Surface Discharges 26		
1.4.1	Basic Geometries 26		
1.4.2	Main Properties 29		

VI Contents	
---------------	--

1.4.3	Surface Discharges and Packed Beds 30
1.4.4	Applications of Barrier Discharges 31
1.5	Gliding Arcs 32
1.6	Concluding Remarks 34
	References 34
2	Catalysts Used in Plasma-Assisted Catalytic Processes: Preparation,
	Activation, and Regeneration 45
	Vasile I. Parvulescu
2.1	Introduction 45
2.2	Specific Features Generated by Plasma-Assisted Catalytic
2.2	Applications 46
2.3	Chemical Composition and Texture 47
2.4	Methodologies Used for the Preparation of Catalysts for
	Plasma-Assisted Catalytic Reactions 49
2.4.1	Oxides and Oxide Supports 49
2.4.1.1	Al_2O_3 49
2.4.1.2	SiO ₂ 50
2.4.1.3	TiO ₂ 51
2.4.1.4	ZrO ₂ 52
2.4.2	Zeolites 52
2.4.2.1	Metal-Containing Molecular Sieves 53
2.4.3	Active Oxides 55
2.4.4	Mixed Oxides 56
2.4.4.1	Intimate Mixed Oxides 56
2.4.4.2	Perovskites 56
2.4.5	Supported Oxides 59
2.4.5.1	Metal Oxides on Metal Foams and Metal Textiles 61
2.4.6	Metal Catalysts 62
2.4.6.1	Embedded Nanoparticles 62
2.4.6.2	Catalysts Prepared via Electroplating 62
2.4.6.3	Catalysts Prepared via Chemical Vapor Infiltration 64
2.4.6.4	Metal Wires 64
2.4.6.5	Supported Metals 65
2.4.6.6	Supported Noble Metals 66
2.5	Catalysts Forming 67
2.5.1	Tableting 67
2.5.2	Spherudizing 69
2.5.3	Pelletization 69
2.5.4	Extrusion 70
2.5.5	Foams 72
2.5.6	Metal Textile Catalysts 73
2.6	Regeneration of the Catalysts Used in Plasma Assisted Reactions 73
2.7	Plasma Produced Catalysts and Supports 74
2.7.1	Sputtering 76

	References 77
3	NO _x Abatement by Plasma Catalysis 89
	Gérald Djéga-Mariadassou, François Baudin, Ahmed Khacef,
	and Patrick Da Costa
3.1	Introduction 89
3.1.1	Why Nonthermal Plasma-Assisted Catalytic NO _x Remediation? 89
3.2	General deNO _x Model over Supported Metal Cations and Role of NTP Reactor: "Plasma-Assisted Catalytic deNO _x Reaction" 90
3.3	About the Nonthermal Plasma for NO _x Remediation 96
3.3.1	The Nanosecond Pulsed DBD Reactor Coupled with a Catalytic deNO _x
	Reactor: a Laboratory Scale Device Easily Scaled Up at Pilot Level 97
3.3.2	Nonthermal Plasma Chemistry and Kinetics 100
3.3.3	Plasma Energy Deposition and Energy Cost 102
3.4	Special Application of NTP to Catalytic Oxidation of Methane on
	Alumina-Supported Noble Metal Catalysts 105
3.4.1	Effect of DBD on the Methane Oxidation in Combined Heat Power (CHP) Conditions 106
3.4.1.1	Effect of Dielectric Material on Methane Oxidation 106
3.4.1.2	Effect of Water on Methane Conversion as a Function of Energy Deposition 106
3.4.2	Effect of Catalyst Composition on Methane Conversion as a Function
3.1.2	of Energy Deposition 107
3.4.2.1	Effect of the Support on Plasma-Catalytic Oxidation of Methane 107
3.4.2.2	Effect of the Noble Metals on Plasma-Catalytic Oxidation of Methane in the Absence of Water in the Feed 108
3.4.2.3	Influence of Water on the Plasma-Assisted Catalytic Methane
	Oxidation in CHP Conditions 109
3.4.3	Conclusions 111
3.5	NTP-Assisted Catalytic NO_x Remediation from Lean Model Exhausts Gases 112
3.5.1	Consumption of Oxygenates and RNO_x from Plasma during the
	Reduction of NO _x According to the Function F3: Plasma-Assisted
	Propene-deNO _x in the Presence of $Ce_{0.68}Zr_{0.32}O_2$ 112
3.5.1.1	Conversion of NO _x and Total HC versus Temperature (Light-Off
	Plot) 112
3.5.1.2	GC/MS Analysis 113
3.5.2	The NTP is Able to Significantly Increase the deNO _x Activity, Extend
	the Operating Temperature Window while Decreasing the Reaction
	Temperature 114
3.5.2.1	TPD of NO for Prediction of the $deNO_x$ Temperature over Alumina
	without Plasma 115
3.5.2.2	Coupling of a NTP Reactor with a Catalyst (Alumina) Reactor for Catalytic-Assisted deNO $_x$ 116

Conclusions 76

2.8

VIII	Contents

3.5.3	Concept of a "Composite" Catalyst Able to Extend the deNO _x Operating Temperature Window 117	
3.5.4	Propene-deNO _x on the "Al ₂ O ₃ /// Rh-Pd/Ce _{0.68} Zr _{0.32} O ₂ ///	
3.3.4	Ag/Ce _{0.68} Zr _{0.32} O ₂ " Composite Catalyst 118	
3.5.4.1	NO _x and C ₃ H ₆ Global Conversion versus Temperature 118	
3.5.4.2	GC/MS Analysis of Gas Compounds at the Outlet of the Catalyst	
	Reactor 119	
3.5.5	NTP Assisted Catalytic deNO $_x$ Reaction in the Presence of a	
	Multireductant Feed: NO (500 ppm), Decane (1100 ppmC), Toluene	
	(450 ppmC), Propene (400 ppmC), and Propane (150 ppmC), O ₂ (8%	
	vol), Ar (Balance) 119	
3.5.5.1	Conversion of NO _x and Global HC versus Temperature 119	
3.5.5.2	GC/MS Analysis of Products at the Outlet of Associated Reactors 120	
3.6	Conclusions 124	
	Acknowledgments 125	
	References 125	
4	VOC Removal from Air by Plasma-Assisted Catalysis-Experimental	
	Work 131	
	Monica Magureanu	
4.1	Introduction 131	
4.1.1	Sources of VOC Emission in the Atmosphere 131	
4.1.2	Environmental and Health Problems Related to VOCs 132	
4.1.3	Techniques for VOC Removal 133	
4.1.3.1	Thermal Oxidation 133	
4.1.3.2	Catalytic Oxidation 134	
4.1.3.3	Photocatalysis 134	
4.1.3.4	Adsorption 135	
4.1.3.5	Absorption 135	
4.1.3.6	Biofiltration 135	
4.1.3.7	Condensation 136	
4.1.3.8	Membrane Separation 136	
4.1.3.9	Plasma and Plasma Catalysis 136	
4.2	Plasma-Catalytic Hybrid Systems for VOC Decomposition 137	
4.2.1	Nonthermal Plasma Reactors 137	
4.2.2	Considerations on Process Selectivity 139	
4.2.3	Types of Catalysts 140	
4.2.4	Single-Stage Plasma-Catalytic Systems 141	
4.2.5	Two-Stage Plasma-Catalytic Systems 141	
4.3	VOC Decomposition in Plasma-Catalytic Systems 142	
4.3.1	Results Obtained in Single-Stage Plasma-Catalytic Systems 142	
4.3.2	Results Obtained in Two-Stage Plasma-Catalytic Systems 150	
4.3.3	Effect of VOC Chemical Structure 154	
4.3.4	Effect of Experimental Conditions 155	
4341	Effect of VOC Initial Concentration 155	

4.3.4.2	Effect of Humidity 155
4.3.4.3	Effect of Oxygen Partial Pressure 156
4.3.4.4	Effect of Catalyst Loading 157
4.3.5	Combination of Plasma Catalysis and Adsorption 159
4.3.6	Comparison between Catalysis and Plasma Catalysis 160
4.3.7	Comparison between Single-Stage and Two-Stage Plasma
	Catalysis 161
4.3.8	Reaction By-Products 162
4.3.8.1	Organic By-Products 162
4.3.8.2	Inorganic By-Products 163
4.4	Concluding Remarks 164
	References 165
5	VOC Removal from Air by Plasma-Assisted Catalysis: Mechanisms,
	Interactions between Plasma and Catalysts 171
	Christophe Leys and Rino Morent
5.1	Introduction 171
5.2	Influence of the Catalyst in the Plasma Processes 172
5.2.1	Physical Properties of the Discharge 172
5.2.2	Reactive Species Production 174
5.3	Influence of the Plasma on the Catalytic Processes 174
5.3.1	Catalyst Properties 174
5.3.2	Adsorption 175
5.4	Thermal Activation 177
5.5	Plasma-Mediated Activation of Photocatalysts 178
5.6	Plasma-Catalytic Mechanisms 179
	References 180
6	Elementary Chemical and Physical Phenomena in Electrical Discharge
	Plasma in Gas-Liquid Environments and in Liquids 185
	Bruce R. Locke, Petr Lukes, and Jean-Louis Brisset
6.1	Introduction 185
6.2	Physical Mechanisms of Generation of Plasma in Gas-Liquid
	Environments and Liquids 188
6.2.1	Plasma Generation in Gas Phase with Water Vapor 188
6.2.2	Plasma Generation in Gas-Liquid Systems 189
6.2.2.1	Discharge over Water 189
6.2.2.2	Discharge in Bubbles 191
6.2.2.3	Discharge with Droplets and Particles 192
6.2.3	Plasma Generation Directly in Liquids 193
6.3	Formation of Primary Chemical Species by Discharge Plasma in
	Contact with Water 199
6.3.1	Formation of Chemical Species in Gas Phase with Water Vapor 199
6.3.1.1	Gas-Phase Chemistry with Water Molecules 201

×	Contents
- 1	

6.3.1.2	Gas-Phase Chemistry with Water Molecules, Ozone, and Nitrogen	
())	Species 206	
6.3.2	Plasma-Chemical Reactions at Gas-Liquid Interface 210	
6.3.3	Plasma Chemistry Induced by Discharge Plasmas in Bubbles and	
	Foams 213	
6.3.4	Plasma Chemistry Induced by Discharge Plasmas in Water Spray	
	and Aerosols 215	
6.4	Chemical Processes Induced by Discharge Plasma Directly	
	in Water 217	
6.4.1	Reaction Mechanisms of Water Dissociation by Discharge Plasma	
	in Water 217	
6.4.2	Effect of Solution Properties and Plasma Characteristics on Plasma	
	Chemical Processes in Water 222	
6.5	Concluding Remarks 224	
	Acknowledgments 224	
	References 225	
7	Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and	
	in Gas-Liquid Environments 243	
	Petr Lukes, Bruce R. Locke, and Jean-Louis Brisset	
7.1	Introduction 243	
7.2	Aqueous-Phase Plasmachemical Reactions 243	
7.2.1	Acid-Base Reactions 245	
7.2.2	Oxidation Reactions 251	
7.2.2.1	Hydroxyl Radical 252	
7.2.2.2	Ozone 253	
7.2.2.3	Hydrogen Peroxide 254	
7.2.2.4	Peroxynitrite 255	
7.2.3	Reduction Reactions 256	
7.2.3.1	Hydrogen Radical 256	
7.2.3.2	Perhydroxyl/Superoxide Radical 257	
7.2.4	Photochemical Reactions 257	
7.3	Plasmachemical Decontamination of Water 259	
7.3.1	Aromatic Hydrocarbons 260	
7.3.1.1	Phenol 260	
7.3.1.2	Substituted Aromatic Hydrocarbons 263	
7.3.1.3	Polycyclic and Heterocyclic Aromatic Hydrocarbons 265	
7.3.2	Organic Dyes 267	
7.3.2.1	Azo Dyes 268	
7.3.2.2	Carbonyl Dyes 270	
7.3.2.3	Aryl Carbonium Ion Dyes 271	
7.3.3	Aliphatic Compounds 275	
7.3.3.1	Methanol 275	
7.3.3.2	Dimethylsulfoxide 277	
7.3.3.3	Tetranitromethane 279	

7.4	Aqueous-Phase Plasma-Catalytic Processes 279
7.4.1	Iron 280
7.4.1.1	Catalytic Cycle of Iron in Plasmachemical Degradation of Phenol 282
7.4.2	Platinum 284
7.4.2.1	The Role of Platinum as a Catalyst in Fenton's Reaction 285
7.4.3	Tungsten 286
7.4.4	Titanium Dioxide 288
7.4.5	Activated Carbon 290
7.4.6	Silica Gel 291
7.4.7	Zeolites 291
7.5	Concluding Remarks 292
	Acknowledgments 293
	References 293
8	Biological Effects of Electrical Discharge Plasma in Water and
	in Gas-Liquid Environments 309
	Petr Lukes, Jean-Louis Brisset, and Bruce R. Locke
8.1	Introduction 309
8.2	Microbial Inactivation by Nonthermal Plasma 310
8.2.1	Dry Gas Plasma 311
8.2.2	Humid Gas Plasma 313
8.2.3	Gas Plasma in Contact with Liquids 313
8.2.3.1	Discharge over Water and Hydrated Surfaces 313
8.2.3.2	Discharge with Water Spray 314
8.2.3.3	Gas Discharge in Bubbles 314
8.2.4	Plasma Directly in Water 314
8.2.5	Kinetics of Microbial Inactivation 315
8.2.5.1	Comments on Sterilization and Viability Tests 316
8.3	Chemical Mechanisms of Electrical Discharge Plasma Interactions
	with Bacteria in Water 317
8.3.1	Bacterial Structure 319
8.3.2	Reactive Oxygen Species 320
8.3.2.1	Hydroxyl Radical 320
8.3.2.2	Hydrogen Peroxide 321
8.3.3	Reactive Nitrogen Species 324
8.3.3.1	Peroxynitrite 325
8.3.4	Post-discharge Phenomena in Bacterial Inactivation 327
8.4	Physical Mechanisms of Electrical Discharge Plasma Interactions with
	Living Matter 330
8.4.1	UV Radiation 331
8.4.2	X-Ray Emission 332
8.4.3	Shockwaves 332
8.4.4	Thermal Effects and Electrosurgical Plasmas 334
8.4.5	Electric Field Effects and Bioelectrics 335
8.5	Concluding Remarks 336

Acknowledg	337	
References	337	

9	Hydrogen and Syngas Production from Hydrocarbons 353
	Moritz Heintze
9.1	Introduction: Plasma Catalysis 353
9.2	Current State of Hydrogen Production, Applications, and Technical
	Requirements 354
9.2.1	Steam Reforming: SR 355
9.2.2	Partial Oxidation: POX 356
9.2.3	Dry Carbon Dioxide Reforming: CDR 357
9.2.4	Pyrolysis 357
9.3	Description and Evaluation of the Process 358
9.3.1	Materials Balance: Conversion, Yield, and Selectivity 358
9.3.2	Energy Balance: Energy Requirement and Efficiency 359
9.4	Plasma-Assisted Reforming 360
9.4.1	Steam Reforming 360
9.4.1.1	Conversion of Methane 360
9.4.1.2	Conversion of Higher Hydrocarbons 362
9.4.1.3	Conversion of Oxygenates 363
9.4.2	Partial Oxidation 365
9.4.2.1	Conversion of Methane 365
9.4.2.2	Conversion of Higher Hydrocarbons 367
9.4.3	Carbon Dioxide Dry Reforming 369
9.4.3.1	Reforming of Methane to Syngas 369
9.4.3.2	Coupling to Higher Hydrocarbons 372
9.4.3.3	Reforming of Higher Hydrocarbons 372
9.4.4	Plasma Pyrolysis 373
9.4.4.1	Methane Pyrolysis to Hydrogen and Carbon 373
9.4.4.2	Production of Acetylene 374
9.4.4.3	Pyrolysis of Oxygenates 377
9.4.5	Combined Processes 377
9.4.5.1	Autothermal Reforming of Methane 378
9.4.5.2	Autothermal Reforming of Liquid Fuels 378
9.4.5.3	Reforming with Carbon Dioxide and Oxygen 381
9.4.5.4	Reforming with Carbon Dioxide and Steam 381
9.4.5.5	Other Feedstock 381
9.5	Summary of the Results and Outlook 382
	References 384

Index 393