TABLE OF CONTENTS

Chapter	1	:	Introduction.
---------	---	---	---------------

1.1 Nature and scope of the work	1
1.2 Methodology	2
1.3 Innovations and conclusions	3
Chapter 2: General aspects of incompressible flow. Theoretical review.	
2.1 Introduction	
	6
2.2 The Navier-Stokes equations for uniform, incompressible fluids	6
2.3 Initial and boundary conditions	8
2.4 The energy equation	11
2.5 The vorticity equation	12
2.6 The pressure Poisson equation for incompressible flows	14
2.7 General aspects of turbulent flows. Averaging methods and Reynolds equations	15
2.8 Turbulence transport equations	18
2.8.1 The exact K equation	19
2.8.2 The exact ϵ equation	20
2.8.3 The exact $\overline{u_iu_j}$ equation	21
2.9 Turbulence models	22
2.9.1 Definition and classification	22
2.9.2 Algebraic models	24
2.9.3 The K (one-equation) model	25
2.9.4 The two-equation K - ϵ model	25
2.9.5 Reynolds-stress transport models	27
2.9.6 The $K-\epsilon-A$ model	29
2.9.7 Practical considerations	29
2.10 Boundary conditions for K and ϵ	30
2.10.1 Wall boundary conditions	30
2.10.2 Planes and axes of symmetry	34
2.10.3 Turbulent non-turbulent interfaces	34
2.10.4 Free-surface boundary conditions	34
······································	J T

Chapter 3: Mathematical modeling of breaking shallow water waves. Proposed methodology.

3.1 Introduction

3.2 Physical processes	39
3.2.1 Wave breaking criteria	39
3.2.2 Shallow water steepening vs. dispersion	40
3.2.3 Wave overturning	40
3.2.4 Breaking wave propagation and decay	42
3.2.5 Other physical effects	43
3.3 Mathematical descriptions	44
3.3.1 Wave theories. Range of validity	45
3.3.2 Shallow water equations. Characteristics and discontinuities	47
3.3.3 Boussinesq-type shallow water equations	48
3.3.4 Overturning wave models	5 0
3.4 Wave theories for very shallow water	51
3.4.1 Solitary waves	51
3.4.2 Hydraulic jumps. Discrete forms of the conservation laws	53
3.5 Summary of experimental investigations	5 6
3.5.1 Wave-wave interactions	56
3.5.2 Hydraulic jumps	57
3.5.3 Waves breaking on a slope	60
3.6 Description of the proposed methodology	65
Chapter 4: MAC-type methods for incompressible free-surface flows. 4.1 Introduction	67
4.2 The choice of the mesh	67
4.3 The MAC (Marker-And-Cell) method	70
4.4 The projection method	71
4.5 The SMAC (Simplified-Marker-And-Cell) method	73
4.6 The pressure-velocity iteration method	75
4.7 Numerical treatment of free-surfaces	77
4.7.1 Free-surface representation methods	77
4.7.2 Methods for updating the free-surface	78
4.7.3 Discretization of the free-surface boundary conditions	79
4.8 Stability considerations	81
4.8.1 The convection-diffusion equation	85
4.8.2 Stability of the momentum equations	88
4.9 Conclusions	89
Chapter 5: Description of the numerical model.	
5.1 Introduction	91
5.2 Momentum equation approximations	94

5.3 Continuity equation approximation	98		
5.4 Approximations for the K and ϵ equations			
5.5 Updating the fluid configuration	104		
5.5.1 Algorithm for the convection of F	104		
5.5.2 Determining interfaces within a cell	106		
5.6 Velocity boundary conditions	107		
5.6.1 Mesh boundaries	107		
5.6.2 Free-surface boundaries	110		
5.6.3 Internal-obstacle boundaries	110		
5.7 Boundary conditions for the K and ϵ equations	112		
5.8 Initial conditions for the K and ϵ equations	115		
5.9 Stability considerations	117		
5.10 Programming considerations	121		
5.11 Selected test problems	124		
5.11.1 Laminar cavity flow	125		
5.11.2 Grid turbulence	128		
5.11.3 Logarithmic boundary layer	129		
5.11.4 Turbulent cavity flow	132		
5.11.5 Dam-break problem			
Chapter 6: Numerical simulation of shallow water waves.			
6.1 Introduction	139		
6.2 Propagation of a solitary wave over a horizontal bottom	1 3 9		
6.3 Collision between solitary waves	144		
6.3.1 Waves of equal amplitude	145		
6.3.2 Waves of different amplitude	151		
6.4 Simulation of undular, transitional and turbulent hydraulic jumps	155		
6.4.1 Undular jump	157		
6.4.2 Transitional jump	160		
6.4.3 Turbulent hydraulic jump	164		
6.5 Breaking of a solitary wave over a slope	172		
6.6 Breaking of a train of solitary waves over a slope	177		
Chapter 7: Conclusions. Future research and development.			
7.1 Summary and conclusions	181		
7.2 Future research and development	183		
References	186		