

Table of Contents

Modern Aspects of Quantitative Theory of Free-Radical Copolymerization	
S. I. Kuchanov	1
Dependence of Viscosity on the Composition of Concentrated Dispersions	
and the Free Volume Concept of Disperse Systems	
L. B. Kandyrin, V. N. Kuleznev	103
Glassy State Relaxation and Deformation in Polymers	
T. S. Chow	149
Author Index Volumes 101–103	
Author Index	191
Subject Index	
Subject Index	193

Modern Aspects of Quantitative Theory of Free-Radical Copolymerization

Semion I. Kuchanov

Polymer Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow,
V-234, 119899, USSR

1 Introduction	3
2 Kinetic Models	6
2.1 Terminal and Penultimate Models	6
2.2 Consideration of Complexing	7
2.3 Other Models	8
2.4 Multicomponent Copolymerization	9
3 Statistical Problems of Copolymerization Theory	10
3.1 Copolymer Statistics Within the Framework of Simple Models	10
3.2 Copolymer Statistics Within the Framework of the Complex Participation Model	13
3.3 Different Methods for the Statistical Description of Binary Copolymers	15
4 Statistical Description of Multicomponent Copolymers	16
4.1 Sequence Distribution in Macromolecules	16
4.2 "Instantaneous" Chemical Distribution	17
4.3 A Simple Procedure Available for the Calculation of Multicomponent Copolymer Composition	20
4.4 Degenerated Systems	22
4.5 Azeotropy	23
4.6 Simplified Terminal Model of Multicomponent Copolymerization	27
4.7 Copolymer Symmetry	28
4.8 Statistical Stationarity in Copolymer Description	29
4.9 Calculations Within the Framework of Models Other than the Terminal one	30

5 Copolymerization Dynamics	30
5.1 Statistical Characteristics of the Copolymers Produced at High Conversions	30
5.2 The General Dynamic Theory of m-Component Copolymerization	35
5.3 Terpolymerization	40
5.4 Copolymerization of Four Monomers	45
5.5 The Dynamics of Systems Described by Models other than the Terminal one	50
5.6 Composition Inhomogeneity of the Multicomponent Copolymerization Products	52
6 Discrimination of the Kinetic Models and Estimation of Their Parameters	54
6.1 General Strategy	54
6.2 Reactivity Ratios Estimation Based on Copolymer Composition Data	57
6.3 Application of NMR and Discrimination of the Kinetic Models of Copolymerization	63
7 The Effect of Synthesis Conditions on Copolymer Properties	76
7.1 Binary Copolymers	76
7.2 Possibilities of Prediction of Some Properties of Multicomponent Copolymers	80
8 Polymerization in Continuous Flow Systems	86
8.1 Qualitative Peculiarities of Continuous Copolymerization	86
8.2 Importance of Hydrodynamic Stirring	87
8.3 Multiplicity of the Steady-State Regimes	88
8.4 Binary Copolymerization	89
9 Conclusion	92
10 References	94

Dependence of Viscosity on the Composition of Concentrated Dispersions and the Free Volume Concept of Disperse Systems

L. B. Kandyrin, V. N. Kuleznev*

M. V. Lomonossov Institute of Fine Chemical Technology, 86 Vernadsky Prospect, 117571,
Moscow, USSR

1 Introduction	105
1.1 The Widespread Use of Concentrated Dispersions	105
1.2 Types of Disperse Systems	105
1.3 Subjects Under Consideration	105
1.4 The Structure of the Survey	106
2 The Dependence of the viscosity of disperse systems on Concentration and Their Flow Theories	106
2.1 Phenomenological Approaches and Empirical Formulas	106
2.2 Theoretical Models	111
2.3 The Transition Region from Fluid to Solid-like Disperse systems	123

* To whom correspondence should be addressed.

3 Viscosity of Molecular Systems and Free Volume Theories	124
3.1 Phenomenological Approaches	124
3.2 Theoretical Models	125
3.3 The Transition Region from Mobile to Glassy Systems	126
4 The Flow and Deformation of Concentrated Disperse Systems in the Light of Free Volume Concepts	127
4.1 Comparison of the Flow Theories of Disperse Systems with the Free Volume Theory	127
4.2 The Relationship Between Mechanical Properties and the Free Volume of Disperse Systems	130
4.3 The Mobility of Disperse System Particles and Its Change with the Free Volume	137
4.4 Determination of the Maximum Packing Fraction of Polydisperse Fillers and Optimization of the Composition of Composites	142
4.5 Structurally Similar Approaches	143
5 Conclusion	144
6 References	145

Glassy State Relaxation and Deformation in Polymers

T. S. Chow

Xerox Webster Research Center, 800 Phillips Road, 114-39D,
Webster, NY 14580, USA

1	Introduction	152
2	Glass Theory	152
2.1	Equation of Motion	152
2.2	Nonequilibrium State	156
2.3	Relaxation Time	157
2.4	Relaxation Spectrum	158
3	Glass Transition	160
3.1	Role of Chain Conformation	160
3.2	PVT Behavior	162
3.3	Stress-Induced Glass Transition	163
4	Viscoelastic Relaxation	165
4.1	Shift Factor	165
4.2	Creep Compliance	167
4.3	Dynamic Response	170
4.4	Low Temperature Physical Aging	172
5	Plastic Yield	174
5.1	Nonlinear Viscoelastic Relaxation	174
5.2	Effect of Physical Aging	176
5.3	Temperature Dependence	177
5.4	Effect of Stress Field	178

6 Polymer Composites	179
6.1 Composite Modulus	179
6.2 Yield Stress	181
6.3 Stress-Strain Relationship	183
7 Compatible Glassy Blends	185
7.1 Nonequilibrium Interaction	185
7.2 Yield Behavior	187
8 Conclusions	188
9 References	189