Contents

Preface to the First Edition	•
CHAPTER 1	
Geometry in Regions of a Space. Basic Concepts	
§1. Co-ordinate systems	
1.1. Cartesian co-ordinates in a space	
1.2. Co-ordinate changes	
§2. Euclidean space	
2.1. Curves in Euclidean space	
2.2. Quadratic forms and vectors	14
§3. Riemannian and pseudo-Riemannian spaces	11
3.1. Riemannian metrics	1
3.2. The Minkowski metric	20
§4. The simplest groups of transformations of Euclidean space	23
4.1. Groups of transformations of a region	23
4.2. Transformations of the plane	2:
4.3. The isometries of 3-dimensional Euclidean space	31
4.4. Further examples of transformation groups	34
4.5. Exercises	37
§5. The Serret-Frenet formulae	38
5.1. Curvature of curves in the Euclidean plane	38
5.2. Curves in Euclidean 3-space. Curvature and torsion	42
5.3. Orthogonal transformations depending on a parameter	47
5.4. Exercises	48
§6. Pseudo-Euclidean spaces	50
6.1. The simplest concepts of the special theory of relativity	50
6.2. Lorentz transformations	52
6.3. Exercises	60

Xii Contents

CHAPTER 2	
The Theory of Surfaces	61
§7. Geometry on a surface in space	61
7.1. Co-ordinates on a surface	61
7.2. Tangent planes	66
7.3. The metric on a surface in Euclidean space	68
7.4. Surface area	72
7.5. Exercises	76
§8. The second fundamental form	76
8.1. Curvature of curves on a surface in Euclidean space	76
8.2. Invariants of a pair of quadratic forms	79
8.3. Properties of the second fundamental form	80
8.4. Exercises	86
§9. The metric on the sphere	86
§10. Space-like surfaces in pseudo-Euclidean space	90
10.1. The pseudo-sphere	90
10.2. Curvature of space-like curves in \mathbb{R}^3_1	94
§11. The language of complex numbers in geometry	95
11.1. Complex and real co-ordinates	95
11.2. The Hermitian scalar product	97
11.3. Examples of complex transformation groups	99
§12. Analytic functions	100
12.1. Complex notation for the element of length, and for	
the differential of a function	100
12.2. Complex co-ordinate changes	104
12.3. Surfaces in complex space	106
§13. The conformal form of the metric on a surface	109
13.1. Isothermal co-ordinates. Gaussian curvature in terms	
conformal co-ordinates	109
13.2. Conformal form of the metrics on the sphere and the Lobachevskian plane	
13.3. Surfaces of constant curvature	114
13.4. Exercises	117
§14. Transformation groups as surfaces in <i>N</i> -dimensional space	120
14.1. Co-ordinates in a neighbourhood of the identity	120
14.2. The exponential function with matrix argument	120
14.3. The quaternions	127
14.4. Exercises	131
§15. Conformal transformations of Euclidean and pseudo-Euclid	136
spaces of several dimensions	
- Parasa er er er annensions	136
CHAPTER 3	
Tensors: The Algebraic Theory	145
§16. Examples of tensors	
§17. The general definition of a tensor	145
17.1. The transformation rule for the components of a tensor	151
of arbitrary rank	
>	151

Contents xiii

	17.2. Algebraic operations on tensors	157
	17.3. Exercises	161
§18.	Tensors of type $(0, k)$	161
	18.1. Differential notation for tensors with lower indices only	161
	18.2. Skew-symmetric tensors of type $(0, k)$	164
	18.3. The exterior product of differential forms. The exterior algebra	166
	18.4. Skew-symmetric tensors of type $(k, 0)$ (polyvectors). Integrals	
	with respect to anti-commuting variables	167
	18.5. Exercises	170
§19.	Tensors in Riemannian and pseudo-Riemannian spaces	170
	19.1. Raising and lowering indices	170
	19.2. The eigenvalues of a quadratic form	172
	19.3. The operator *	174
	19.4. Tensors in Euclidean space	174
	19.5. Exercises	175
§20.	The crystallographic groups and the finite subgroups of the rotation	
	group of Euclidean 3-space. Examples of invariant tensors	176
§21.	Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues	197
	21.1. Skew-symmetric tensors. The invariants of an electromagnetic field	197
	21.2. Symmetric tensors and their eigenvalues. The energy-momentum	•
022	tensor of an electromagnetic field	202
§22.	The behaviour of tensors under mappings	205
	22.1. The general operation of restriction of tensors with lower indices	205
	22.2. Mappings of tangent spaces	207
§23.	Vector fields	208
	23.1. One-parameter groups of diffeomorphisms	208
	23.2. The exponential function of a vector field	210 211
	23.3. The Lie derivative	
	23.4. Exercises	215 216
924.	Lie algebras	216
	24.1. Lie algebras and vector fields	218
	24.2. The fundamental matrix Lie algebras 24.3. Linear vector fields	223
	24.4. Left-invariant fields defined on transformation groups	225
	24.5. Invariant metrics on a transformation group	227
	24.6. The classification of the 3-dimensional Lie algebras	229
	24.7. The Lie algebras of the conformal groups	231
	24.8. Exercises	236
	APTER 4	
	Differential Calculus of Tensors	238
§25.	The differential calculus of skew-symmetric tensors	238
	25.1. The gradient of a skew-symmetric tensor	238
	25.2. The exterior derivative of a form	241
	25.3. Exercises	247
§26.	Skew-symmetric tensors and the theory of integration	248
	26.1. Integration of differential forms	248

xiv Contents

	26.2. Examples of integrals of differential forms	254
	26.3. The general Stokes formula. Examples	259
	26.4. Proof of the general Stokes formula for the cube	267
	26.5. Exercises	269
§27.	Differential forms on complex spaces	270
	27.1. The operators d' and d''	270
	27.2. Kählerian metrics. The curvature form	273
§28.	Covariant differentiation	275
	28.1. Euclidean connexions	275
	28.2. Covariant differentiation of tensors of arbitrary rank	284
§29.	Covariant differentiation and the metric	288
	29.1. Parallel transport of vector fields	288
	29.2. Geodesics	290
	29.3. Connexions compatible with the metric	291
	29.4. Connexions compatible with a complex structure (Hermitian metric)	295
	29.5. Exercises	297
§30.	The curvature tensor	299
	30.1. The general curvature tensor	299
	30.2. The symmetries of the curvature tensor. The curvature tensor	
	defined by the metric	304
	30.3. Examples: The curvature tensor in spaces of dimensions 2 and 3;	
	the curvature tensor of transformation groups	306
	30.4. The Peterson-Codazzi equations. Surfaces of constant negative	
	curvature, and the "sine-Gordon" equation	311
	30.5. Exercises	314
CHA	APTER 5	
The	Elements of the Calculus of Variations	317
§31.	One-dimensional variational problems	317
	31.1. The Euler-Lagrange equations	317
	31.2. Basic examples of functionals	321
§32.	Conservation laws	324
	32.1. Groups of transformations preserving a given variational problem	324
	32.2. Examples. Applications of the conservation laws	326
§33.	Hamiltonian formalism	337
-	33.1. Legendre's transformation	337
	33.2. Moving co-ordinate frames	340
	33.3. The principles of Maupertuis and Fermat	345
	33.4. Exercises	348
§34.	The geometrical theory of phase space	348
	34.1. Gradient systems	348
	34.2. The Poisson bracket	352
	34.3. Canonical transformations	358
	34.4. Exercises	362
§35.	Lagrange surfaces	362
	35.1. Bundles of trajectories and the Hamilton-Jacobi equation	362
	35.2. Hamiltonians which are first-order homogeneous with	302
	respect to the momentum	367

Contents xv

§36.	The second variation for the equation of the geodesics	371
-	36.1. The formula for the second variation	371
	36.2. Conjugate points and the minimality condition	375
CHA	APTER 6	
The	Calculus of Variations in Several Dimensions.	
Fiel	ds and Their Geometric Invariants	379
§37.	The simplest higher-dimensional variational problems	379
3	37.1. The Euler-Lagrange equations	379
	37.2. The energy-momentum tensor	383
	37.3. The equations of an electromagnetic field	388
	37.4. The equations of a gravitational field	394
	37.5. Soap films	401
	37.6. Equilibrium equation for a thin plate	407
	37.7. Exercises	412
§38.	Examples of Lagrangians	413
§39.	The simplest concepts of the general theory of relativity	416
§40.	The spinor representations of the groups $SO(3)$ and $O(3, 1)$.	
	Dirac's equation and its properties	431
	40.1. Automorphisms of matrix algebras	431
	40.2. The spinor representation of the group $SO(3)$	433
	40.3. The spinor representation of the Lorentz group	435
	40.4. Dirac's equation	439
	40.5. Dirac's equation in an electromagnetic field. The operation	
	of charge conjugation	441
§41.	Covariant differentiation of fields with arbitrary symmetry	443
	41.1. Gauge transformations. Gauge-invariant Lagrangians	443
	41.2. The curvature form	447
	41.3. Basic examples	448
§42.	Examples of gauge-invariant functionals. Maxwell's equations and	
	the Yang-Mills equation. Functionals with identically zero	
	variational derivative (characteristic classes)	453
Bibl	iography	459
Inde	ex	463