

Contents

Introduction. LUTZ NOVER and LAWRENCE HIGHTOWER	1
--	---

Part I Heat Shock-Induced Developmental Abnormalities

1 Heat Shock Effects in Snail Development (With 6 Figures)

ELIDA K. BOON-NIERMEIJER

1 Introduction	7
2 Normal Development	8
3 Thermosensitivity During Development	10
3.1 Terms to Express Thermosensitivity	10
3.2 The Cleavage Period: Heat and the Cell Division Cycle	11
3.3 Death and Anomalies Induced by Heat During Development of <i>Lymnaea</i>	12
3.4 General Implications	14
3.4.1 Heat Shock as a Teratogen	14
3.4.2 Evidence for a Relationship Between Heat-Induced Anomalies and the Cell Division Cycle	16
3.4.3 Hypothesis Concerning Determinative Events	17
4 The Heat Shock Response During Development	18
4.1 Heat Shock Response and Thermotolerance	18
4.2 Definition of Thermotolerance	18
4.3 Thermotolerance in <i>Lymnaea</i> : Kinetics and HSP Synthesis	19
4.4 Heat-Induced Changes in Thermosensitivity and Gene Expression During Development	22
References	25

2 Environmentally Induced Development Defects in *Drosophila* (With 3 Figures)

NANCY S. PETERSEN and HERSCHEL K. MITCHELL

1 Historical Background	29
2 Phenocopy Induction	32

2.1	Conditions for Induction of Phenocopies	32
2.1.1	Sensitive Periods	32
2.1.2	Timing	32
2.1.3	Heating Conditions	33
2.2	Induction of Phenocopies in Recessive Mutant Heterozygotes	33
2.3	Effects of Heat Shock on Gene Expression	35
3	Phenocopy Prevention	36
3.1	Induction of Phenocopy Thermotolerance	36
3.2	Thermotolerance and Heat Shock Proteins	36
3.3	Molecular Models for Thermotolerance	39
4	Conclusions	40
	References	41

3 The Use of Heat-Shock-Induced Ectopic Expression to Examine the Functions of Genes Regulating Development

GREG GIBSON

1	Scope	44
2	The Heat Shock Strategy	45
3	Applications	47
3.1	Minimal Induction: Sex Determination and Ageing	47
3.2	Early Development: Gradients and Metameric Stability	48
3.3	Establishing Identity: The Homeotic Genes	49
3.3.1	The Functional Structure of Homeotic Proteins	49
3.3.2	The Homeotic Regulatory Hierarchy	50
3.4	The Fates of Individual Cells: Photoreceptors	52
4	Conclusions	52
4.1	General Applicability to the Study of Development	52
4.2	Prospects	54
	References	55

4 Thermotolerance and Heat Shock Response During Early Development of the Mammalian Embryo (With 7 Figures)

DAVID WALSH, KAREN LI, CAROL CROWTHER, DEBBIE MARSH,
and MARSHALL EDWARDS

1	Introduction	58
2	Developmental Defects Caused by Hyperthermia	58
3	The Heat Shock Response in Mammalian Embryos	59
3.1	Embryo Culture and Heat Shock Genes	60
3.2	Heat Shock and Neural Tube Closure	61
3.3	Cell Death of the Neuroectoderm	63
3.4	Induction of Heat Shock Proteins	63
3.4.1	Translation	63
3.4.2	Transcription	63

4	Thermotolerance and Heat Shock Protein Synthesis	66
5	Heat Shock and Cell Cycle Changes	66
6	Conclusion	68
	References	69

**5 Strain Differences in Expression
of the Murine Heat Shock Response:
Implications for Abnormal Neural Development (With 3 Figures)**

MARK D. ENGLE and RICHARD H. FINNELL

1	Introduction	71
2	The Heat Shock Proteins	71
3	Strain Differences in Heat-Induced Neural Tube Defects	72
4	The Murine Heat Shock Response	74
4.1	The Heat Shock Response in the Murine Embryo and Lymphocyte	74
4.2	A Genetic Basis for Strain Differences in the Murine Heat Shock Response	77
4.3	An In Vitro Model of the Murine Heat Shock Response	78
5	Conclusions	79
	References	81

**Part II
Cell-Specific and Developmental Control
of Hsp Synthesis**

**6 The Expression of Heat Shock Protein and Cognate Genes
During Plant Development**

JILL WINTER and RALPH SINIBALDI

1	Introduction	85
2	Classes of Heat Stress Proteins and the Putative Functions of the Family Members	86
2.1	Hsp104	86
2.2	Hsp90	87
2.3	Hsp70	89
2.4	Hsp60	90
2.5	Low Molecular Weight Hsps (Hsp20 Family)	90
2.6	Other Heat Shock Proteins	93
3	Hsps and Hscs Expressed During Plant Development	93
3.1	Seeds and Seedlings	94
3.1.1	Hsps and hsp mRNAs During Seed Development	94
3.1.2	Heat Tolerance During Seed Germination and Endogenous Hsps	95
3.2	Roots and Leaves	96
3.3	Flowering	97

3.4	Pollen	97
3.4.1	Heat Stress During Pollen Development	97
3.4.2	Heat Stress During Pollen Germination	98
4	Conclusions	100
	References	100

**7 Expression of Heat Shock Proteins
During Development in *Drosophila* (With 3 Figures)**

ANDRÉ P. ARRIGO and ROBERT M. TANGUAY

1	Introduction	106
2	Expression of Hsp83	106
3	Expression of Hsp70 and Its Cognates	107
4	Expression of the Small Hsps	108
4.1	Gene Structure and Control of Expression in the Absence of Stress	108
4.2	Tissue-Specific Expression of Hsp27	110
4.3	Tissue-Specific Expression of Hsp26	112
4.4	Tissue-Specific Expression of Hsp23	112
5	Cellular Localization and Function(s) of the Small Hsps During Development	113
6	Summary	116
	References	116

**8 Regulation of Heat Shock Gene Expression
During *Xenopus* Development (With 12 Figures)**

JOHN J. HEIKKILA, PATRICK H. KRONE, and NICK OVSENEK

1	Introduction	120
2	Heat Shock-Induced Accumulation of Hsp and <i>Ubiquitin</i> mRNA in <i>Xenopus</i> Embryos is Developmentally Regulated	121
3	Pattern of Hsp and <i>Ubiquitin</i> mRNA Accumulation in Heat Shocked Embryos	123
4	Involvement of Cis- and Trans-Acting Factors in the Developmental Regulation of Hsp70 Gene Expression	124
5	Regulation of <i>Hsp30</i> Gene Expression During Development	131
6	Isolation and Sequence Analysis of <i>Hsp30</i> Genes from a <i>Xenopus laevis</i> Genomic Library	133
	References	135

9 Heat Shock Gene Expression During Mammalian Gametogenesis and Early Embryogenesis

DEBRA J. WOLGEMUTH and CAROL M. GRUPPI

1	Introduction	138
1.1	Molecular Approaches to Studying Mammalian Germ-Cell Development	138
1.2	Brief Background and Classification of Hsp	140
1.3	Significance of Conservation of Coding and Regulatory Regions in <i>hsp</i> Genes	141
1.4	Rationale for Examining Hsp Expression and Function in Germ Cells	142
2	Heat-Shock Gene Expression and Function During Mammalian Spermatogenesis	142
2.1	Key Features of Mammalian Spermatogenesis	142
2.2	Expression of the <i>hsp70</i> Gene Family	143
2.3	Expression of <i>hsp90</i> Genes	144
3	Expression and Function of Hsp During Mammalian Oogenesis and Early Embryogenesis	144
3.1	Key Features of Mammalian Oogenesis and Very Early Embryonic Divisions	144
3.2	Expression of Hsp in Oocytes and Early Embryos	145
4	Summary and Speculation as to Function of Hsp in Mammalian Germ Cells and Embryos	146
4.1	Possible Functions of Hsp in General	146
4.2	Possible Functions of Heat Shock Genes in Male Germ Cell Differentiation	147
4.3	Molecular and Genetic Approaches for Identifying Function During Mammalian Gametogenesis	147
References		149

10 Heat Shock Protein Synthesis in Preimplantation Mouse Embryo and Embryonal Carcinoma Cells (With 3 Figures)

VALÉRIE MEZGER, VINCENT LEGAGNEUX, CHARLES BABINET,
MICHEL MORANGE, and OLIVER BESNAUDE

1	Introduction	153
1.1	The Major Murine Heat-Shock Proteins	153
1.2	Heat-Shock Protein Expression During Gametogenesis	154
2	Heat-Shock Protein Synthesis in Unstressed Early Embryonic Cells	155
2.1	Heat-Shock Proteins, the First Major Products of Zygotic Transcription	155
2.2	High Spontaneous Expression of Hsps in the Preimplantation Mouse Embryo	156
2.3	Hsp Expression in Embryonal Carcinoma Cells	156
3	Transcription of Heat Shock Genes in Unstressed EC Cells	157
3.1	Transcriptional and Posttranscriptional Regulation of Spontaneous Hsp Synthesis in EC Cells	157

3.2	HSE-Binding Activity in EC Cells	157
3.3	An Ela-Like Activity in EC Cells	158
3.4	High Levels of B2 Transcripts in Undifferentiated Mouse Embryonic Cells	159
4	Defective Heat Shock Response in Early Embryonic Cells	160
4.1	Lack of Heat Shock Protein Inducibility in the Early Preimplantation Mouse Embryo	160
4.2	Inducible and Noninducible Embryonal Cell Lines	160
4.3	Noninducible EC Cells are Deficient in Transcriptional Transactivation of Heat Shock Genes by Stress	162
4.4	HSE-Binding Activity in Heat-Shocked EC Cells	163
5	Concluding Remarks	163
	References	164

**11 Transcriptional Regulation of Human *Hsp70* Genes:
Relationship Between Cell Growth, Differentiation,
Virus Infection, and the Stress Response (With 5 Figures)**

BENETTE PHILLIPS and RICHARD I. MORIMOTO

1	Introduction	167
2.	Factors Which Alter the Expression of <i>Hsp70</i> , <i>Grp78</i> , and <i>P72</i>	168
2.1	Factors Which Alter Expression of <i>Hsp70</i>	168
2.1.1	Determinants of Basal Expression	168
2.1.2	Classical Stress-Response Inducers	170
2.1.3	DNA Viruses	170
2.1.4	Cell Cycle Regulation, Growth Factors	173
2.1.5	Agents Inducing Differentiation	173
2.1.6	Other Agents	175
2.2	Factors Which Alter the Expression of <i>Grp78</i>	175
2.3	Factors Which Alter the Expression of <i>P72</i>	176
3	Mechanisms of Activation	176
3.1	Heat Shock Induction	177
3.2	Hemin Induction	180
3.3	Viral Induction	182
3.3.1	Adenovirus	182
3.3.2	Herpes Simplex Virus-1 (HSV-1)	183
3.3.3	Simian Virus 5 (SV5)	183
4	Concluding Remarks	184
	References	184

**12 Transforming Growth Factor- β
Regulates Basal Expression of the *hsp70* Gene Family
in Cultured Chicken Embryo Cells (With 5 Figures)**

IVONE M. TAKENAKA, SETH SADIS, and LAWRENCE E. HIGHTOWER

1	Introduction	188
2	Biochemical and Biological Properties of TGF- β	189
3	TGF- β in Embryogenesis and Development	191
4	Heat Shock Proteins Are Induced During Embryogenesis and in Highly Mitogenic Cells	192
5	Regulators of Basal Expression of Heat Shock Gene Families in Unstressed Cells	194
6	TGF- β Rapidly Induces Hsc70 in Cultured Chicken Embryo Cells	195
7	The Hsc70 Molecular Chaperone Interacts with Diverse Polypeptide Sequences	200
8	Conclusion	204
References		205

13 Cell Growth, Cytoskeleton, and Heat Shock Proteins (With 2 Figures)

ICHIRO YAHARA, SHIGEO KOYASU, KAZUKO IIDA, HIDETOSHI IIDA,
FUMIO MATSUZAKI, SEIJI MATSUMOTO, and YOSHIHIKO MIYATA

1	Cyclic AMP and Expression of Heat Shock Proteins in the Budding Yeast	210
2	Heat Shock-Induced Reorganization of Cytoskeletal Structures	211
3	Hsp90 is an Actin-Binding Protein	213
References		215

**14 Expression of Heat Shock Genes (*hsp70*)
in the Mammalian Nervous System (With 4 Figures)**

IAN R. BROWN

1	Introduction	217
2	Early Studies on Brain Heat-Shock Proteins	218
3	Induction of Heat Shock Proteins in the Visual System	218
4	Analysis of <i>hsp70</i> mRNAs in the Mammalian Nervous System	219
5	Regional Differences in Expression of <i>hsp70</i> Genes in Brain Detected by In Situ Hybridization	219
6	Induction of an Hsp70 Gene at the Site of Tissue Injury in the Brain	222
7	Immunological Detection of Hsp70 in Brain Tissue	224
8	Tissue-Protective Effects of Heat Shock in the Nervous System	225
9	Conclusion	226
References		226