## **Contents**

| 1. | Introduction                                                 | 1  |  |  |
|----|--------------------------------------------------------------|----|--|--|
| Pa | art I Methods                                                |    |  |  |
| 2. | Reductive Perturbation Method                                | 5  |  |  |
|    | 2.1 Oscillators Versus Fields of Oscillators                 | 5  |  |  |
|    | 2.2 The Stuart-Landau Equation                               | 8  |  |  |
|    | 2.3 Onset of Oscillations in Distributed Systems             | 13 |  |  |
|    | 2.4 The Ginzburg-Landau Equation                             | 17 |  |  |
| 3. | Method of Phase Description I                                | 22 |  |  |
|    | 3.1 Systems of Weakly Coupled Oscillators                    | 22 |  |  |
|    | 3.2 One-Oscillator Problem                                   | 24 |  |  |
|    | 3.3 Nonlinear Phase Diffusion Equation                       | 28 |  |  |
|    | 3.4 Representation by the Floquet Eigenvectors               | 29 |  |  |
|    | 3.5 Case of the Ginzburg-Landau Equation                     | 32 |  |  |
| 4. | Method of Phase Description II                               | 35 |  |  |
|    | 4.1 Systematic Perturbation Expansion                        | 35 |  |  |
|    | 4.2 Generalization of the Nonlinear Phase Diffusion Equation | 41 |  |  |
|    | 4.3 Dynamics of Slowly Varying Wavefronts                    | 46 |  |  |
|    | 4.4 Dynamics of Slowly Phase-Modulated Periodic Waves        | 54 |  |  |
| Pa | art II Applications                                          |    |  |  |
| 5. | Mutual Entrainment                                           | 60 |  |  |
|    | 5.1 Synchronization as a Mode of Self-Organization           | 60 |  |  |
|    | 5.2 Phase Description of Entrainment                         | 62 |  |  |
|    | 5.2.1 One Oscillator Subject to Periodic Force               | 62 |  |  |
|    | 5.2.2 A Pair of Oscillators with Different Frequencies       | 65 |  |  |
|    | 5.2.3 Many Oscillators with Frequency Distribution           | 66 |  |  |
|    | 5.3 Calculation of $\Gamma$ for a Simple Model               | 67 |  |  |
|    | 5.4 Soluble Many-Oscillator Model Showing Synchronization-   |    |  |  |
|    | Desynchronization Transitions                                | 68 |  |  |



| VIII | Contents |
|------|----------|
|      |          |

| 5.5    | Oscillators Subject to Fluctuating Forces                   |
|--------|-------------------------------------------------------------|
| 5.5    | 5.5.1 One Oscillator Subject to Stochastic Forces           |
|        | 5.5.2 A Pair of Oscillators Subject to Stochastic Forces    |
|        | 5.5.3 Many Oscillators Which are Statistically Identical    |
| 5.6    | Statistical Model Showing Synchronization-Desynchronization |
| 5.0    | Transitions                                                 |
| 5.7    | Bifurcation of Collective Oscillations                      |
| 6. Che | emical Waves                                                |
| 6.1    | Synchronization in Distributed Systems                      |
| 6.2    | Some Properties of the Nonlinear Phase Diffusion Equation   |
|        | Development of a Single Target Pattern                      |
| 6.4    | Development of Multiple Target Patterns                     |
|        | Phase Singularity and Breakdown of the Phase Description    |
| 6.6    | Rotating Wave Solution of the Ginzburg-Landau Equation      |
| 7 Ch.  | and al Tambalance                                           |
|        | emical Turbulence                                           |
|        |                                                             |
|        | Phase Turbulence Equation                                   |
|        | Wavefront Instability                                       |
|        | Phase Turbulence                                            |
|        | Amplitude Turbulence                                        |
| 7.6    | Turbulence Caused by Phase Singularities                    |
|        | dix                                                         |
| Α.     | Plane Wave Solutions of the Ginzburg-Landau Equation        |
| В.     | The Hopf Bifurcation for the Brusselator                    |
| Refere | ences                                                       |
|        |                                                             |
| Subjec | et Index                                                    |