Contents

ı.		oduction
		D. Mathur (With 5 Figures)
		The Need to Study Ion Impact Phenomena
	1.2	Some Contemporary Ion Production Techniques
		1.2.1 Electron Impact (EI) Sources
		1.2.2 The Electron Bombardment Ion Source (EBIS)
		1.2.3 The Electron Cyclotron Resonance Ion Source (ECRIS)
		1.2.4 The 'Ion Hammer' Technique
		References
2.	Ion	Formation Processes:
	Ion	zation in Ion-Electron Collisions
	By	A. Müller (With 60 Figures)
	2.1	Theoretical Methods
		2.1.1 The Classical Approach of J. J. Thomson
		2.1.2 Quantum Mechanical Approaches 1
		2.1.3 Predictor Formulae
		2.1.4 Threshold Behaviour
	2.2	Ionization Mechanisms
		2.2.1 Single Ionization
		2.2.2 Multiple Ionization
		2.2.3 Summation of Cross Section Contributions
	2.3	Experimental Approaches
		2.3.1 Plasma Rate Measurements
		2.3.2 Trapped-Ion Methods
		2.3.3 Ion Channeling
		2.3.4 Crossed-Beams Method
	2.4	Single Ionization Cross Section Data 4
		2.4.1 Hydrogen-like Ions
		2.4.2 Helium-like Ions
		2.4.3 Lithium-like Ions
		2.4.4 Sodium-like Ions
		2.4.5 Heavy Alkali-like Ions
		2.4.6 Magnesium-like Ions 6
		2.4.7 Isonuclear Sequences
		2.4.8 Ionization of Heavy Ions 6

ΧI

	2.5	Multiple Ionization Cross Section Data	72
		2.3.1 Helium-like lons	72
		2.5.2 The Argon Isonuclear Sequence	72
		2.3.3 THE ACTION ISORUCIEST Neguence	7/
	2.6	A Unified Picture of Ionization	78 78
		2.6.1 Single and Double Ionization of Sb and Bi Ions	78 78
		2.6.2 Single and Multiple Ionization of Heavy Metal Ions	80
	2.7	Conclusions	80
		References	
			86
3	. Ior	-Neutral Reactions: Collision Spectrometry	
	of I	Multiply Charged Ions at Low Energies	
	Bv	E. Y. Kamber and C. L. Cocke (With 21 Figures)	
	3.1	Dynamics of Collisions Theoretical Agreement	91
	3.2	Theoretical Aspects	92
		3.2.1 Landau-Zener Model	94
		3.2.1 Landau-Zener Model	94
		3.2.3 Reaction Window	97
	3.3	3.2.3 Reaction Window	98
	3.4	Experimental Techniques Discussion of Translational Farms Same	98
	٠	Discussion of Translational Energy Spectrometry 3.4.1 State-Selective Single Electron Capture Processes	99
		by Ground and Motorable David. Gr	
		by Ground and Metastable Doubly Charged Ions	99
		3.4.2 State-Selective Single Electron Capture by Multiply	
		Charged Ions	105
	3 5	3.4.3 Multiple Electron Capture by Multiply Charged Ions	111
	3.3	Discussion of State-Selective Differential Electron	
		Capture Cross Sections	116
		References	120
4.	Ene	rgy Spectrometry of Fine-Structure Transitions	
	ın I	on-Atom Collisions	
	By I	N. Kobayashi (With 15 Figures)	123
	4.1	THEIR RESOLUTION TO ITANSIATIONAL FINERRY CRECKTORNAL.	125
		Titi Apparatus	125
		" LE DIOGUCINIS OF LINE STAND	126
	4.2	THIC-BUILDING ITAINSING IN NET ATT and Vet	_
		4.2.1 Translational Energy Spectra	126
		T-2-2 11acuonal Populations of "Page and 4D. Central	126
		7.4.3 Clubs accuons for hine-Structure Transitions	127
		in Ne ⁺ , Ar ⁺ and Kr ⁺	100
	4.3	= normation and DC-exchangin Processes	129
		in Doubly Charged Rare Gas Ions	
		7.2.1 HIGHSIGHAI P.DPTUV STACTO	133
		4.3.2 Fractional Populations of 3P_J , 1D_2 and 1S_0	133
			134

		4.3.3 Cross Sections for Excitation and De-excitation Among	
		${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$, ${}^{1}D_{2}$ and ${}^{1}S_{0}$ States	135
	4.4	The Role of Fine-Structure States in Electron Capture Reactions	138
		4.4.1 Relative Cross Sections for Reactions in Kr ²⁺ (¹ D ₂)+Ne	138
		4.4.2 Diabatic Potential Energy Curves	140
		4.4.3 Landau-Zener Model for Single Crossing	141
		4.4.4 Multichannel Landau-Zener Model	143
		4.4.5 Landau-Zener Calculation	143
		with Weighted Transition Probability	144
		References	
		References	145
5.	Pro	bing Interaction Potentials:	
		all Angle Differential Scattering of H ⁺ and H with He	
	Bv	L. K. Johnson and R. F. Stebbings (With 9 Figures)	147
	5.1	Experimental Method	148
	5.2	Theoretical Considerations	151
		5.2.1 Molecular Orbital Expansion Method	152
		5.2.2 Potential Scattering	154
	53	Results and Discussion	156
	5.5	5.3.1 H-He Direct Scattering	
		5.3.2 H ⁺ -He Charge Transfer and Direct Scattering	156
	51	Summer.	159
	J. 4	Summary	162
		References	163
6.	Hig	h-Resolution Translational Energy	
		ctrometry of Molecular Ions	
		M. Hamdan and A. G. Brenton (With 23 Figures)	165
	6.1	Some Typical Experimental Arrangements	167
	0.1	6.1.1 Double-Focussing Arrangements	
	62	Results and Discussion	169
	0.2	6.2.1 TES of keV Atomic Ions	173
		6.2.2 TES on the Sain Conservation Date	173
		6.2.2 TES and the Spin-Conservation Rule	175
		6.2.3 Doubly Charged Diatomic Molecules	177
		References	196
7	Mal	ecular Ionization Energies	
′•	by I	Pouble Charge Transfer Spectrometry	
	D. I	E.M. Hamie Chief & File	
	Бу I	F. M. Harris (With 5 Figures)	199
	7.1	Apparatus and Experimental Techniques	201
		7.1.1 Double Charge Transfer Spectrometry Prior to 1977	201
		7.1.2 Double Charge Transfer Spectrometer Used at Paris	201
		7.1.3 Double Charge Transfer Spectrometry at Swansea	201
	7 ^	7.1.4 Double Charge Transfer Spectrometer Used at Bombay	203
	1.2	Studies of Electronic States of Doubly Charged Ions	204
		7.2.1 Spin Conservation	204

		7.2.2 Studies of Small Molecules	208
	7.3	Studies of Large Molecules	209
		7.3.1 CH ₃ OH	209
		7.3.2 SF ₆	211
		7.3.3 CH ₄	211
		7.3.4 Fluoromethanes, Chloromethanes and Bromomethanes	
		7.3.5 Perhalomethanes	212
		7.3.6 Fluoroethanes	213
	7.4	Reaction Window for Double Electron Capture	213
	•••	7.4.1 Endoergicity of DEC Reactions	214
		7.4.2 Theoretical Prediction of a Reaction Window	214
		7.4.3 Relative Cross Sections for DEC Reactions Measured	215
		as a Function of Endousieits	
		as a Function of Endoergicity	216
		1.4.4 Evidence for a Reaction Window in Collisions	
	75	Involving the Molecular Target CH ₃ Br	216
	1.5	Single Ionization Energies of Radical Species	219
		7.5.1 CH ₃ O and CH ₃ S Radicals	219
		7.5.2 Mercaptyl Radicals C ₂ H ₅ S and n-C ₃ H ₇ S	220
		7.5.3 CF ₂ Cl and CFCl ₂ Radicals	220
		7.5.4 The SF ₅ Radical	221
		References	222
_	۵.	44 - 475 - 475 - 475	
ð.	Stu	dies of Multiply Charged Molecules	
	by i	Ion Collision Techniques and Ab Initio Theoretical Methods	
	By	V. R. Marathe and D. Mathur (With 10 Figures)	225
	8.1	Stability of Multiply Charged Molecular Ions	226
		8.1.1 Potential Energy Functions	226
		8.1.2 A Qualitative Molecular Orbital Picture of Stability	228
	8.2	Contemporary Ion-Impact Methods	
		of Studying Multiply Charged Molecules	229
		8.2.1 Translational Energy Spectrometry	229
		8.2.2 Transmission of Singly and Doubly Charged Ions	
		Through Electrostatic and Magnetic Fields	229
		8.2.3 Charge-Stripping Studies	231
		8.2.4 Double Electron Capture	232
		8.2.3 Dissociation Studies	233
		6.2.0 Excitation (De-excitation) and Electron Capture Reactions	235
		8.2./ Studies Using Forward-Geometry Mass Spectrometers	236
		6.2.6 Studies Using High-Energy Accelerators	237
		0.2.9 Elicity Calibration	240
	8.3	Other Experimental Techniques	241
		0.5.1 Augel Specifoscopy	241
		6.5.2 Photolonization Methods	241
		6.5.5 Optical Specifoscopy	242
		8.3.4 Electron Impact Experiments	243

8.	4 Theoretical Description of Molecular Ions	245
	8.4.1 The Schrödinger Equation	
	and the Born-Oppenheimer Approximation	245
	8.4.2 Hartree-Fock Theory	246
	8.4.3 Electron Correlation	252
	8.4.4 Multiconfiguration SCF Method (MCSCF)	258
	8.4.5 Spin-Coupled Valence Bond Theory	260
8.	5 A Glimpse into the Real World of Multiply Charged Molecules:	
	Ambiguities and Controversies	262
	8.5.1 Diatomic Ions	262
	8.5.2 Triatomic Ions	266
	8.5.3 Polyatomic Ions	268
	References	272
9. Di	ssociative Recombination	
	Ion-Electron Collisions: New Directions	
B	J.B.A. Mitchell (With 6 Figures)	275
9.	1 New Developments in the Merged Beam Technique	275
9.:	2 Detection of Highly Excited States	279
9.	3 Measurements of Branching Ratios	280
9.	4 Recombination Studies at Storage Rings	281
	5 Heavy Ions	283
	6 Epilogue	285
	Ions Fare Ye Well	285
	References	285
CL :	ect Index	297