Contents

1	Leas	st Deviation Problems	1		
	1.1	Examples of Optimization	1		
		1.1.1 Inverting a Symmetric Matrix	1		
		1.1.2 Explicit Runge–Kutta Methods	2		
		1.1.3 Electrotechnics	3		
		1.1.4 V. A. Markov's Problem	4		
		1.1.5 Other Applications	5		
	1.2	Analyzing Optimization Problems	5		
	1.3	Chebyshev Subspaces	8		
	1.4	The Problem of Optimal Stability Polynomial	9		
		1.4.1 Properties of Optimal Stability Polynomials	10		
	1.5	Problems and Exercises	12		
2	Che	hebyshev Representation of Polynomials			
	2.1		17		
		2.1.1 The Homology Space and the Lattice L_M	18		
		2.1.2 The Space of Differentials on the Curve	20		
		2.1.3 A Distinguished Form η_M on the Curve	20		
	2.2	Polynomials and Curves	21		
		2.2.1 The Stability of the Chebyshev Representation	24		
	2.3		24		
3	Rep	resentations for the Moduli Space	29		
	3.1		29		
			30		
			31		
			32		
	3.2		33		
		3.2.1 The Fundamental Group of the Moduli Space	33		
		•	34		
			35		
			36		

viii Contents

		3.2.5	The Modular Group Action on the Group &	38				
		3.2.6	Equivalence of Labyrinths	40				
		3.2.7	A Quasiconformal Deformation	41				
	3.3	-	alence of the Representations	44				
		3.3.1	An Isomorphism Between \mathscr{T}_g^k and \mathscr{G}_g^k	44				
		3.3.2	An Isomorphism Between \mathscr{T}_{g}^{k} and $\tilde{\mathscr{H}}_{g}^{k}$	46				
		3.3.3	An Isomorphism Between \mathcal{L}_g^k and \mathcal{G}_g^k	50				
	3.4	Proble	ems and Exercises	51				
4	Cell	Decom	position of the Moduli Space	53				
	4.1		s and Trees	53				
		4.1.1	Foliations and global width Function	54				
		4.1.2	The Graph Γ of the Curve M	55				
		4.1.3	Characteristics of a Graph Γ	56				
		4.1.4	Properties of the Graph of a Curve	57				
		4.1.5	Recovery of the Curve M from Its Graph Γ	58				
	4.2	The C	oordinate Space of a Graph	62				
		4.2.1	The Space of a Graph in the Moduli Space	64				
	4.3	A Clas	ssification of Extremal Polynomials	69				
	4.4	Proble	ems and Exercises	71				
5	Abe	pel's Equations73						
	5.1	_	eriod Map	74				
		5.1.1	The Homology Group Bundle and Translation of Cycles	74				
		5.1.2	The Bundle of Differentials and the Period Map	75				
		5.1.3	Properties of the Period Map	76				
	5.2	Abel's	s Equations on the Moduli Space	80				
	5.3		mage of the Period Map	83				
	5.4	Proble	ems and Exercises	87				
6	Con	nputatio	ons in Moduli Spaces	89				
	6.1	-	ion Theory in the Schottky Model	90				
		6.1.1	Linear Poincaré Theta-Series	90				
		6.1.2	The Convergence of Linear Poincaré Series	92				
		6.1.3	Arranging of Summation in Poincaré Series	95				
		6.1.4	Automorphic Functions and Their Derivatives	97				
	6.2	Variati	ional Theory	99				
		6.2.1	The Analytic Dependence of Differentials on the Moduli	99				
		6.2.2	Variations of Abelian Integrals	101				
		6.2.3	Quadratic Poincaré Theta Series	103				
		6.2.4	Hejhal's Formulae	104				
		6.2.5	A Basis of Quadratic Poincaré Theta Series	107				
	6.3	Calcul	lation of Polynomials	109				
		6.3.1	A Parametric Representation	109				
		6.3.2	Abel's Equations in the Space \mathscr{G}_g^k	110				
		6.3.3	The Scheme of the Algorithm	111				
	6.4	Proble	ems and Exercises	112				

7	The Problem of the Optimal Stability Polynomial							
	7.1	The C	hebyshev Representation for Solutions	116				
		7.1.1	The Topological Type of the Associated Curve	116				
		7.1.2	The Moduli Space	117				
		7.1.3	The Subgroup Induced by the Covering	117				
		7.1.4	Cycles on a Riemann Surface	117				
		7.1.5	Abel's Equations	118				
		7.1.6	Equations on the Moduli Space	119				
	7.2	The S	chottky Model	120				
		7.2.1	The Deformation Space	120				
		7.2.2	The Moduli Space and the Deformation Space	122				
		7.2.3	Constructive Function Theory	124				
	7.3	Equat	ions on the Deformation Space	127				
		7.3.1	Abel's Equations	127				
		7.3.2	Constraints	128				
		7.3.3	The Jet of $T(u)$	128				
		7.3.4	The Projective Jet of $x(u)$	129				
		7.3.5	Variational Theory	129				
		7.3.6	Hejhal's Formulae	130				
<u> </u>			erical Experiments	132				
	7.5	Proble	ems and Exercises	133				
Co	onclu	sion		135				
Re	References							
Fu	ırthei	r Readi	ng	145				
In	dex			147				