

Contents

Preface	vii
How to use this book in courses	xxi
Acknowledgment	xxv
Notation	xxvii

1 Schwartz distributions	1
1.1 Introduction: Dirac's delta function $\delta(x)$ and its properties	1
1.2 Test space $\mathcal{D}(\Omega)$ of Schwartz	6
1.2.1 Support of a continuous function	6
1.2.2 Space $\mathcal{D}(\Omega)$	9
1.2.3 Space $\mathcal{D}^m(\Omega)$	13
1.2.4 Space $\mathcal{D}_K(\Omega)$	13
1.2.5 Properties of $\mathcal{D}(\Omega)$	14
1.3 Space $\mathcal{D}'(\Omega)$ of (Schwartz) distributions	25
1.3.1 Algebraic dual space $\mathcal{D}^*(\Omega)$	25
1.3.2 Distributions and the space $\mathcal{D}'(\Omega)$ of distributions on Ω	26
1.3.3 Characterization, order and extension of a distribution	27
1.3.4 Examples of distributions	29
1.3.5 Distribution defined on test space $\mathcal{D}(\Omega)$ of complex-valued functions	40
1.4 Some more examples of interesting distributions	41
1.5 Multiplication of distributions by C^∞ -functions	51
1.6 Problem of division of distributions	54
1.7 Even, odd and positive distributions	57
1.8 Convergence of sequences of distributions in $\mathcal{D}'(\Omega)$	59
1.9 Convergence of series of distributions in $\mathcal{D}'(\Omega)$	67
1.10 Images of distributions due to change of variables, homogeneous, invariant, spherically symmetric, constant distributions	68
1.10.1 Periodic distributions	75
1.11 Physical distributions versus mathematical distributions	84
1.11.1 Physical interpretation of mathematical distributions	84
1.11.2 Load intensity	85
1.11.3 Electrical charge distribution	88
1.11.4 Simple layer and double layer distributions	90
1.11.5 Relation with probability distribution [7]	94

2 Differentiation of distributions and application of distributional derivatives	96
2.1 Introduction: an integral definition of derivatives of C^1 -functions	96
2.2 Derivatives of distributions	100
2.2.1 Higher-order derivatives of distributions T	101
2.3 Derivatives of functions in the sense of distribution	102
2.4 Conditions under which the two notions of derivatives of functions coincide	119
2.5 Derivative of product αT with $T \in \mathcal{D}'(\Omega)$ and $\alpha \in C^\infty(\Omega)$	121
2.6 Problem of division of distribution revisited	125
2.7 Primitives of a distribution and differential equations	131
2.8 Properties of distributions whose distributional derivatives are known	141
2.9 Continuity of differential operator $\partial^\alpha : \mathcal{D}'(\Omega) \rightarrow \mathcal{D}'(\Omega)$	142
2.10 Delta-convergent sequences of functions in $\mathcal{D}'(\mathbb{R}^n)$	149
2.11 Term-by-term differentiation of series of distributions	154
2.12 Convergence of sequences of $C^k(\bar{\Omega})$ (resp. $C^{k,\lambda}(\bar{\Omega})$) in $\mathcal{D}'(\Omega)$	173
2.13 Convergence of sequences of $L^p(\Omega)$, $1 \leq p \leq \infty$, in $\mathcal{D}'(\Omega)$	173
2.14 Transpose (or formal adjoint) of a linear partial differential operator	175
2.15 Applications: Sobolev spaces $H^m(\Omega)$, $W^{m,p}(\Omega)$	177
2.15.1 Sobolev Spaces	177
2.15.2 Space $H^m(\Omega)$	178
2.15.3 Examples of functions belonging to or not belonging to $H^m(\Omega)$	182
2.15.4 Separability of $H^m(\Omega)$	184
2.15.5 Generalized Poincaré inequality in $H^m(\Omega)$	186
2.15.6 Space $H_0^m(\Omega)$	187
2.15.7 Space $H^{-m}(\Omega)$	191
2.15.8 Quotient space $H^m(\Omega)/M$	191
2.15.9 Quotient space $H^m(\Omega)/P_{m-1}$	193
2.15.10 Other equivalent norms in $H^m(\Omega)$	194
2.15.11 Density results	195
2.15.12 Algebraic inclusions (\subset) and imbedding (\hookrightarrow) results	195
2.15.13 Space $W^{m,p}(\Omega)$ with $m \in \mathbb{N}$, $1 \leq p \leq \infty$	196
2.15.14 Space $W_0^{m,p}(\Omega)$, $1 \leq p < \infty$	200
2.15.15 Space $W^{-m,q}(\Omega)$	203
2.15.16 Quotient space $W^{m,p}(\Omega)/M$ for $m \in \mathbb{N}$, $1 \leq p < \infty$	203
2.15.17 Density results	207
2.15.18 A non-density result	208
2.15.19 Algebraic inclusion \subset and imbedding (\hookrightarrow) results	209
2.15.20 Space $W^{s,p}(\Omega)$ for arbitrary $s \in \mathbb{R}$	209

3 Derivatives of piecewise smooth functions, Green's formula, elementary solutions, applications to Sobolev spaces	211
3.1 Distributional derivatives of piecewise smooth functions	211
3.1.1 Case of single variable ($n = 1$)	211
3.1.2 Case of two variables ($n = 2$)	215
3.1.3 Case of three variables ($n = 3$)	230
3.2 Unbounded domain $\Omega \subset \mathbb{R}^n$, Green's formula	235
3.3 Elementary solutions	238
3.4 Applications	257
4 Additional properties of $\mathcal{D}'(\Omega)$	263
4.1 Reflexivity of $\mathcal{D}(\Omega)$ and density of $\mathcal{D}(\Omega)$ in $\mathcal{D}'(\Omega)$	263
4.2 Continuous imbedding of dual spaces of Banach spaces in $\mathcal{D}'(\Omega)$	265
4.3 Applications: Sobolev spaces $H^{-m}(\Omega)$, $W^{-m,q}(\Omega)$	269
4.3.1 Space $W^{-m,q}(\Omega)$, $1 < q \leq \infty$, $m \in \mathbb{N}$	273
5 Local properties, restrictions, unification principle, space $\mathcal{E}'(\mathbb{R}^n)$ of distributions with compact support	280
5.1 Null distribution in an open set	280
5.2 Equality of distributions in an open set	280
5.3 Restriction of a distribution to an open set	280
5.4 Unification principle	283
5.5 Support of a distribution	285
5.6 Distributions with compact support	286
5.7 Space $\mathcal{E}'(\mathbb{R}^n)$ of distributions with compact support	287
5.7.1 Space $\mathcal{E}(\mathbb{R}^n)$	287
5.7.2 Space $\mathcal{E}'(\mathbb{R}^n)$	288
5.8 Definition of $\langle T, \phi \rangle$ for $\phi \in C^\infty(\mathbb{R}^n)$ and $T \in \mathcal{D}'(\mathbb{R}^n)$ with non-compact support	296
6 Convolution of distributions	298
6.1 Tensor product	298
6.2 Convolution of functions	303
6.3 Convolution of two distributions	315
6.4 Regularization of distributions by convolution	327
6.5 Approximation of distributions by C^∞ -functions	329
6.6 Convolution of several distributions	331
6.7 Derivatives of convolutions, convolution of distributions on a circle Γ and their Fourier series representations on Γ	333
6.8 Applications	349
6.9 Convolution equations (see also Section 8.7, Chapter 8)	364

6.10 Application of convolutions in electrical circuit analysis and heat flow problems	375
6.10.1 Electric circuit analysis problem [7]	375
6.10.2 Excitations and responses defined by several functions or distributions [7]	380
7 Fourier transforms of functions of $L^1(\mathbb{R}^n)$ and $S(\mathbb{R}^n)$	383
7.1 Fourier transforms of integrable functions in $L^1(\mathbb{R}^n)$	383
7.2 Space $S(\mathbb{R}^n)$ of infinitely differentiable functions with rapid decay at infinity	405
7.2.1 Space $S(\mathbb{R}^n)$	407
7.3 Continuity of linear mapping from $S(\mathbb{R}^n)$ into $S(\mathbb{R}^n)$	412
7.4 Imbedding results	413
7.5 Density results	415
7.6 Fourier transform of functions of $S(\mathbb{R}^n)$	417
7.7 Fourier inversion theorem in $S(\mathbb{R}^n)$	418
8 Fourier transforms of distributions and Sobolev spaces of arbitrary order $H^s(\mathbb{R}^n)$	423
8.1 Motivation for a possible definition of the Fourier transform of a distribution	423
8.2 Space $S'(\mathbb{R}^n)$ of tempered distributions	424
8.2.1 Tempered distributions	424
8.2.2 Space $S'(\mathbb{R}^n)$	426
8.2.3 Examples of tempered distributions of $S'(\mathbb{R}^n)$	426
8.2.4 Convergence of sequences in $S'(\mathbb{R}^n)$	429
8.2.5 Derivatives of tempered distributions	432
8.3 Fourier transform of tempered distributions	435
8.3.1 Fourier transforms of Dirac distributions and their derivatives .	438
8.3.2 Inversion theorem for Fourier transforms on $S'(\mathbb{R}^n)$	440
8.3.3 Fourier transform of even and odd tempered distributions .	441
8.4 Fourier transform of distributions with compact support	445
8.5 Fourier transform of convolution of distributions	450
8.5.1 Fourier transforms of convolutions	451
8.6 Derivatives of Fourier transforms and Fourier transforms of derivatives of tempered distributions	458
8.7 Fourier transform methods for differential equations and elementary solutions in $S'(\mathbb{R}^n)$	476
8.8 Laplace transform of distributions on \mathbb{R}	492
8.8.1 Space \mathcal{D}'^+	492
8.8.2 Distribution $T^{-1} \in \mathcal{D}'^+$ (see also convolution algebra $A = \mathcal{D}'^+$ (6.9.15b))	496

8.8.3	Inverse \mathcal{L}^{-1} of Laplace transform \mathcal{L}	497
8.9	Applications	502
8.9.1	Sobolev spaces $H^s(\mathbb{R}^n)$	502
8.9.2	Imbedding result	503
8.9.3	Sobolev spaces $H^m(\mathbb{R}^n)$ of integral order m on \mathbb{R}^n	507
8.9.4	Sobolev's Imbedding Theorem (see also imbedding results in Section 8.12)	512
8.9.5	Imbedding result: $S(\mathbb{R}^n) \hookrightarrow H^S(\mathbb{R}^n)$	521
8.9.6	Density results $H^S(\mathbb{R}^n)$	522
8.9.7	Dual space $(H^s(\mathbb{R}^n))'$	523
8.9.8	Trace properties of elements of $H^s(\mathbb{R}^n)$	526
8.10	Sobolev spaces on $\Omega \neq \mathbb{R}^n$ revisited	546
8.10.1	Space $H^s(\overline{\Omega})$ with $s \in \mathbb{R}$, $\Omega \subsetneq \mathbb{R}^n$	546
8.10.2	m -extension property of Ω	550
8.10.3	m -extension property of \mathbb{R}_+^n	558
8.10.4	m -extension property of C^m -regular domains Ω	569
8.10.5	Space $H^s(\Omega)$ with $s \in \mathbb{R}^+$, $\Omega \subset \mathbb{R}^n$	573
8.10.6	Density results in $H^s(\Omega)$	578
8.10.7	Dual space $H^{-s}(\Omega)$	579
8.10.8	Space $H_0^s(\Omega)$ with $s > 0$	579
8.10.9	Space $H^{-s}(\Omega)$ with $s > 0$	580
8.10.10	Space $W^{s,p}(\Omega)$ for real $s > 0$ and $1 \leq p < \infty$	580
8.10.11	Space $H_{00}^s(\Omega)$ with $s > 0$	585
8.10.12	Dual space $(H_{00}^s(\Omega))'$ for $s > 0$	591
8.10.13	Space $W_{00}^{s,p}(\Omega)$ for $s > 0$, $1 < p < \infty$	591
8.10.14	Restrictions of distributions in Sobolev spaces	593
8.10.15	Differentiation of distributions in $H^s(\Omega)$ with $s \in \mathbb{R}$	598
8.10.16	Differentiation of distributions $u \in H^s(\overline{\Omega})$ with $s > 0$	601
8.11	Compactness results in Sobolev spaces	605
8.11.1	Compact imbedding results in $H^s(\Omega)$, $H_0^s(\Omega)$ and $H_{00}^s(\Omega)$	616
8.12	Sobolev's imbedding results	617
8.12.1	Compact imbedding results	632
8.13	Sobolev spaces $H^s(\Gamma)$, $W^{s,p}(\Gamma)$ on a manifold boundary Γ	634
8.13.1	Surface integrals on boundary Γ of bounded $\Omega \subset \mathbb{R}^n$	634
8.13.2	Alternative definition of $H^s(\Gamma)$ with $\Gamma \in C^m$ -class (resp. C^∞ -class)	637
8.13.3	Space $H^s(\Gamma)$ ($s > 0$) with Γ in C^m -class (resp. C^∞ -class)	638
8.13.4	Sobolev spaces on boundary curves Γ in \mathbb{R}^2	641
8.13.5	Spaces $H_0^s(\Gamma_i)$, $H_{00}^s(\Gamma_i)$ for polygonal sides $\Gamma_i \in C^\infty$ -class, $1 \leq i \leq N$	651

8.14 Trace results in Sobolev spaces on $\Omega \subsetneq \mathbb{R}^n$	651
8.14.1 Trace results in $H^m(\mathbb{R}_+^n)$	652
8.14.2 Trace results in $H^m(\Omega)$ with bounded domain $\Omega \subsetneq \mathbb{R}^n$	654
8.14.3 Trace results in $W^{s,p}$ -spaces	670
8.14.4 Trace results for polygonal domains $\Omega \subset \mathbb{R}^2$	672
8.14.5 Trace results for bounded domains with curvilinear polygonal boundary Γ in \mathbb{R}^2	685
8.14.6 Traces of normal components in $L^p(\operatorname{div}; \Omega)$	686
8.14.7 Trace theorems based on Green's formula	691
8.14.8 Traces on $\Gamma_0 \subset \Gamma$	710
9 Vector-valued distributions	712
9.1 Motivation	712
9.2 Vector-valued functions	712
9.3 Spaces of vector-valued functions	715
9.4 Vector-valued distributions	718
9.5 Derivatives of vector-valued distributions	723
9.6 Applications	724
9.6.1 Space $\mathbb{E}(0, T; V, W)$	725
9.6.2 Hilbert space $\mathbb{W}_1(0, T; V)$	725
9.6.3 Hilbert space $\mathbb{W}_2(0, T; V)$	728
9.6.4 Green's formula	729
A Functional analysis (basic results)	731
A.0 Preliminary results	731
A.0.1 An important result on logical implication (\implies) and non-implication ($\not\implies$)	731
A.0.2 Supremum (l.u.b.) and infimum (g.l.b.)	732
A.0.3 Metric spaces and important results therein	732
A.0.4 Important subsets of a metric space $X \equiv (X, d)$	735
A.0.5 Compact sets in \mathbb{R}^n with the <i>usual</i> metric d_2	737
A.0.6 Elementary properties of functions of real variables	738
A.0.7 Limit of a function at a cluster point $\mathbf{x}_0 \in \mathbb{R}^n$	738
A.0.8 Limit superior and limit inferior of a sequence in \mathbb{R}	739
A.0.9 Pointwise and uniform convergence of sequences of functions	740
A.0.10 Continuity and uniform continuity of $f \in \mathcal{F}(\Omega)$	740
A.1 Important properties of continuous functions	741
A.1.1 Some remarkable properties on compact sets in \mathbb{R}^n	741
A.1.2 $C_0^\infty(\Omega)$ -partition of unity on compact set $K \subset\subset \Omega \subset \mathbb{R}^n$	741
A.1.3 Continuous extension theorems	741
A.2 Finite and infinite dimensional linear spaces	743
A.2.1 Linear spaces	743

A.2.2	Linear functionals	746
A.2.3	Linear operators	747
A.3	Normed linear spaces	748
A.3.1	Semi-norm and norm	748
A.3.2	Closed subspace, dense subspace, Banach space and its separability	750
A.4	Banach spaces of continuous functions	750
A.4.1	Banach spaces $C^0(\bar{\Omega})$, $C^k(\bar{\Omega})$	750
A.5	Banach spaces $C^{0,\lambda}(\bar{\Omega})$, $0 < \lambda < 1$, of Hölder continuous functions	753
A.5.1	Hölder continuity and Lipschitz continuity	753
A.5.2	Hölder space $C^{0,\lambda}(\bar{\Omega})$	754
A.5.3	Space $C^{k,\lambda}(\bar{\Omega})$, $0 < \lambda \leq 1$	754
A.6	Quotient space V/M	756
A.7	Continuous linear functionals on normed linear spaces	756
A.7.1	Space V'	756
A.7.2	Hahn–Banach extension of linear functionals in analytic form	757
A.7.3	Consequences of the Hahn–Banach theorem in normed linear spaces	758
A.8	Continuous linear operators on normed linear spaces	760
A.8.1	Space $\mathcal{L}(V; W)$	760
A.8.2	Continuous extension of continuous linear operators by density	761
A.8.3	Isomorphisms and isometric isomorphisms	762
A.8.4	Graph of an operator $A \in \mathcal{L}(V; W)$ and graph norm	762
A.9	Reflexivity of Banach spaces	763
A.10	Strong, weak and weak-* convergence in Banach space V	763
A.10.1	Strong convergence \rightarrow	763
A.10.2	Weak convergence \rightarrow	764
A.10.3	Weak-* convergence \rightarrow^* in Banach space V'	764
A.11	Compact linear operators in Banach spaces	764
A.12	Hilbert space V	765
A.13	Dual space V' of a Hilbert space V , reflexivity of V	768
A.14	Strong, weak and weak-* convergences in a Hilbert space	769
A.15	Self-adjoint and unitary operators in Hilbert space V	769
A.16	Compact linear operators in Hilbert spaces	769
B	L^p-spaces	771
B.1	Lebesgue measure μ on \mathbb{R}^n	771
B.1.1	Lebesgue-measurable sets in \mathbb{R}^n	771
B.1.2	Sets with zero (Lebesgue) measure in \mathbb{R}^n	772
B.1.3	Property P holds almost everywhere (a.e.) on Ω	775

B.2	Space $\mathcal{M}(\Omega)$ of Lebesgue-measurable functions on Ω	776
B.2.1	Measurable functions and space $\mathcal{M}(\Omega)$	776
B.2.2	Pointwise convergence a.e. on Ω	778
B.3	Lebesgue integrals and their important properties	778
B.3.1	Lebesgue integral of a bounded function on bounded domain Ω	778
B.3.2	Important properties of Lebesgue integrals (Kolmogorov and Fomin [20])	780
B.3.3	Some important approximation and density results in $L^1(\Omega)$.	784
B.4	Spaces $L^p(\Omega)$, $1 \leq p \leq \infty$	788
B.4.1	Basic properties	788
B.4.2	Dual space $(L^p(\Omega))'$ of $L^p(\Omega)$ for $1 \leq p \leq \infty$	794
B.4.3	Space $L^2(\Omega)$	797
B.4.4	Some negative properties of $L^\infty(\Omega)$	798
B.4.5	Some nice properties of $L^\infty(\Omega)$	799
B.4.6	Space $L_{\text{loc}}^p(\Omega)$ inclusion results	799
C	Open cover and partition of unity	803
C.1	$C_0^\infty(\Omega)$ -partition of unity theorem for compact sets	803
D	Boundary geometry	808
D.1	Boundary geometry	808
D.1.1	Locally one-sided and two-sided bounded domains Ω	808
D.1.2	Star-shaped domain Ω	808
D.1.3	Cone property and uniform cone property	809
D.1.4	Segment property	811
D.2	Continuity and differential properties of a boundary	812
D.2.1	Continuity and differential properties	812
D.2.2	Open cover $\{\Gamma_r\}_{r=1}^N$ of Γ , local coordinate systems $\{\xi_i^r\}_{i=1}^n$ and mappings $\{\phi_r\}_{r=1}^N$	813
D.2.3	Properties of the mappings $\phi_r : \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$, $1 \leq r \leq N$.	814
D.3	Alternative definition of locally one-sided domain	816
D.4	Alternative definition of continuity and differential properties of $\overline{\Omega}$ as a manifold in \mathbb{R}^n	817
D.5	Atlas/local charts of Γ	818
	Bibliography	819
	Index	823