Contents

Al	Abbreviations								
In	Introduction								
P	ART 1 Biosynthesis of Cellulose								
1	Cell Wall Composition	. 9							
	1.1 Cellulose	. 11							
	1.2 Hemicelluloses	. 12							
	1.3 Pectic Substances	. 14							
	1.4 Cell Wall Proteins	. 17							
	1.5 Lignin	. 18							
	1.6 Interaction Between Cell Wall Polymers	. 20							
	1.7 Changes in Content of Cell Wall Components	. 26							
	1.8 Possible Mechanisms of Endogenous Regulation of								
	Cellulose Biosynthesis	. 28							
	1.8.1 Genetic Regulation								
	1.8.2 Regulation of Enzymatic Activity								
	1.8.3 Membrane Regulation	. 30							
	1.8.4 Substrate Regulation	. 31							
	1.8.5 Energetic Regulation	. 31							
2	Objects Useful for the Study of the Synthesis of Cell Wall Polysaccharides	. 32							
	2.1 Cotton Fiber	. 32							
	2.2 Acetobacteria	. 32							
	2.3 Isolated Protoplasts	. 33							
	2.4 Methods for Extraction of Cell Wall Polysaccharides	. 35							
3	Sequence of Reactions of Biosynthesis of Cellulose and Other								
	Structural Polysaccharides	. 37							
	3.1 Production of Nucleoside Diphosphate Glucose in Photosynthetic Cells	. 37							
	3.2 Nucleoside Diphosphate Sugars as Intermediates in the								
	Synthesis of Polysaccharides	. 38							
	3.3 On the Role of Membrane-bound Lipids and Proteins as								
	Intermediates in the Synthesis of Matrix Polysaccharides	. 43							

VIII Contents

	3.4 Callose as a Possible Intermediate in the Synthesis of Cellulose3.5 Synthesis of Cell Wall Proteins	46 49
4	Synthesis of Structural Polysaccharides: Localization of Reaction Sites	51
	 4.1 On the Role of Golgi Apparatus in the Synthesis of Hemicelluloses and Pectic Substances 4.2 Synthesis of Cellulose in the Plasmalemma and Properties of 	51
	the Cellulose Synthetase Complexes	53 62
	4.4 Influence of Microtubules on the Orientation of Cellulose Microfibrils 4.5 Chitin	66 69
	4.6 Changes in the Synthesis of Structural Polysaccharides Caused by Lead Nitrate and Pipolfen	70
5	Dependence of Intensity of Cellulose Synthesis on	
	Substrate Concentration	76
	 5.1 Experiments with Cotton Fibers 5.2 Experiments with Wheat Leaves 5.3 Approaches to Increase the Content of Substrates 	76 80
	of Cellulose Synthesis	90
6	The Effect of Energy Conditions of Cells on the Biosynthesis of Cellulose	94
	6.1 Experiments with Wheat Leaves	94 97
7	The Effect of Hormones on the Biosynthesis of Structural Polysaccharides .	100
	7.1 The Mechanism of Hormone Action 7.2 Acidification of Cell Walls 7.3 Loosening of Cell Walls 7.4 Enhancement of Cellulose Biosynthesis 7.5 The Effect of Phytohormones on the Synthesis of Cotton-Fiber Cellulose	100 100 103 105
8	Effects of Cultivation Conditions on Cell Wall Regeneration by Isolated Protoplasts	110
	 8.1 Culturing of Protoplasts in the Light and its Influence on the Synthesis of Structural Polysaccharides 8.2 The Dynamics of Ultrastructural Changes and Intensity of Structural 	110
	Polysaccharide Formation in the Course of Cell Wall Regeneration	116
9	The Effect of Climate and Soil Conditions on Cellulose Biosynthesis	122
	9.1 The Effect of Temperature	

Со	ntents	IX
	9.3 The Effect of Illumination	124 125
10	Conclusion	127
Re	ferences	129
PA	ART II Cellulose Structure	
1	General Notes and Definitions	141
2	The Constitution of Cellulose	145
3	Cellulose Configuration	149
4	Cellulose Conformation	156
	4.1 Conformation of Glycosidic Centers 4.2 Conformation of the Isolated Cellulose Helix	156 164
5	Equilibrium and Kinetic Rigidity of Cellulose Macromolecular Chain and Some of its Derivatives in Solution	174
	5.1 Hydrodynamic Properties of Cellulose Derivatives	175
	5.2 Dynamooptical Properties of Cellulose Derivatives	191
	5.3 Electrooptical Properties of Cellulose Derivatives	200
	5.4 Light Scattering of Solutions of Cellulose Derivatives and Equilibrium Rigidity of their Molecules	205
6	Thermodynamic Properties of Cellulose and its Satellites	210
	6.1 Modeling of Thermodynamic Properties of Cellulose and	210
	its Satellites	210
	Properties of Cellulose	214
	6.3 Effect of Chemical Nonuniformity on Thermochemical	
	Properties of Cellulose	218
7	Theoretical Methods of Modeling of Conformational Properties	
	of Cellulose and its Derivatives	221
	7.1 Concentration Dependence of Medium Size Semirigid	
	Macromolecules in Solutions	221
	7.2 Asymmetry of Nitrocellulose Molecular Coils in Solutions	224
	7.3 Dynamics and the Mechanism of Conformational Rearrangements	
	of the Cellulose Macromolecule	231

	7.4	Molecular and Crystalline Structure of Cellulose.	
		The Most Probable Models	236
		7.4.1 Single-Chain Models of Cellulose II	240
		7.4.2 Double-Chain Models of Cellulose II.	
		Mercerized Cellulose	242
		7.4.3 Regenerated Cellulose	
		7.4.4 The Most Probable Models of Cellulose I	
8	Mo	rphological Structure of Cellulose	270
	8 1	Elementary Fibril, Microfibril	270
	8.2	· · · · · · · · · · · · · · · · · · ·	
		Character of Disposition of Cellulose Macromolecules in	2/1
	0.5	Polymer Monocrystal	277
	0.4	Parameters of the Unit Cell of the Natural Cellulose	211
	8.4		• • •
	0.5	Polymeric Monocrystal	280
	8.5	The Role of the Morphological Structure of Cellulose	
		in Forming of Mechanical Properties of its Systems	283
_	_		
9		perimental Methods for Studying Equilibrium and	
	Kin	etic Rigidity of Polymers in Solution	288
	9.1	Viscosity	288
		•	290
		A Procedure for Measurement of Translation	
		Diffusion Coefficients	291
	9.4		293
			295
			298
	7.0	THE MAXWER Effect	290
10	Cor	ıclusion	302
10	Con	ROMESTOR	302
11	Ref	erences	304
Inc	łex o	f Scientific Names	311
_		Index	