TABLE OF CONTENTS

CHAPTER	1	INTRODUCTION
---------	---	--------------

1.1	Historical Background	1
1.2	Stability	3
1.3	Experimental and Numerical Modelling	4
1.4	The Boundary Element Method	6
1.5	Plate Stability by BEM	8
1.6	Scope of the Present Work	9
CHAPTER	2 PLATE STABILITY THEORY	
2.1	Introduction	11
2.2	Stability of Structural Systems	11
2.3	Linear Theory	15
2.4	Large Deflections	24
2.5	Boundary Conditions	26
	2.5.1 Out-of-Plane Boundary Conditions	27
	2.5.2 In-Plane Boundary Conditions	31
2.6	Numerical and Experimental Studies	35
2.7	Conclusions	37
CHAPTER	3 MEMBRANE STATE OF STRESS	
3.1	Introduction	38
3.2	Boundary Integral Formulation	38
3.3		43
3.4	Numerical Implementation	47
3.5	Results	48
3.6	Conclusions	52

CHAPTER 4 CRITICAL LOADS

4.1	Introduction	54
	Boundary Integral Formulation	54
4.2	Boundary Element Solution	59
4.3	4.3.1 Modelling of Boundary Unknowns	59
		60
	4.3.2 Domain Deflection Models	63
	4.3.2.1 Continuous Cells	66
	4.3.2.2 Discontinuous Cells	
	4.3.3 Free Boundary	67
	4.3.4 Eigenvalue Problem	68
4.4	Numerical Implementation	72
4.5		74
	4.5.1 Optimum Nodal Position in Discontinuous Elements	76
	4.5.2 Performance of the Various Interpolation Models	79
	4.5.3 Convergence of Results from the Linear	
	Discontinuous Model	81
	4.5.4 Comparison with Exact Solutions	83
	4.5.5 Comparison with the Finite Element Method	86
4.6		88
,,,,		
CHAPTER	5 DUAL RECIPROCITY	
<u></u>		
5.1	Introduction	89
5.2	Outline of the Method	90
5.3	- to Postan Analysia	93
2	5.3.1 The One-Dimensional Fourier Series	93
	5.3.2 The Two-Dimensional Fourier Series	94
	5.3.3 The Discrete Points Two-Dimensional Fourier	
	Analysis	96
5.4		99
٠,٠	5.4.1 The Trigonometric Deflection Model	99
	5.4.2 The Nodal Deflection Model	104
_		108
5	Transformation of L(w)	

5.6	Transformation of the Domain Integral	109
5.7	The Problem of Singular Integrals	112
5.8	Eigenvalue Problem	113
5.9	Numerical Implementation	115
5.10	Results	118
	5.10.1 Convergence of the Fourier Transformation	119
	5.10.2 Convergence of the Transformed Integrals	124
	5.10.3 Examples of Critical Loads	133
	5.10.3.1 The Trigonometric Deflection Model	134
	5.10.3.2 The Nodal Deflection Model	141
	5.10.3.3 The Plates Deflected Shape	145
5.11	Conclusions	149
CHAPTER	6 LARGE DEFLECTIONS	
6.1	Introduction	151
6.2	Boundary Integral Formulation	152
6.3	Domain Deflection Models	155
6.4	Boundary Element Solution	162
6.5	Solution of the System of Equations	165
6.6	Numerical Implementation	168
6.7	Results	170
6.8	Conclusions	177
CHAPTER	7 CONCLUSIONS	178
	·	
APPENDIX	A The Green's Identities	185
APPENDIX	B Functions of the Fundamental Solutions	187
APPENDIX	C Trigonometric Deflection Functions	191
DEFEDENC	PC	194