Contents

1.	Intro	oduction	1
2.	The	Ray Method	10
	2.1	The Basic Principles	10
	2.2	Variational Theory of the Fermat Functional	13
	2.3	The Solution of the Eikonal Equation;	
		Ray Coordinates and the Geometrical Divergence	19
	2.4	Integration of the Transport Equations	26
	2.5	Maxwell's Equations	29
	2.6	Determining the Short-Wavelength Asymptotic Solution	
		of a Diffraction Problem Using the Ray Method – An Example	35
	2.7	Determination of the Function ψ_0	
		by Using the Localization Principle	38
	2.8	Caustics	39
	2.9	Notes on the Literature	41
3.	The Field Near a Caustic		
	3.1	Preliminary Remarks	42
	3.2	The Etalon Problem for Caustics	43
	3.3	The Ray Field and Eikonal in the Neighborhood of a Caustic	46
	3.4	Derivation of the Recurrence Relations	54
	3.5	The Field in the Vicinity of a Caustic – First Approximation	56
	3.6	Determination of A_j and B_j for $j > 0$	60
	3.7	Determination of the χ_j	62
	3.8	Notes on the Literature	64
4.	Deriv	vation of Asymptotic Formulas for Eigenvalues	
	and l	Eigenfunctions Using the Ray Method	66
	4.1	Introductory Remarks	66
	4.2	Multi-Sheeted Covering Spaces	67
	4.3	Single-Valuedness of the Eigenfunctions	
		and Quantization Conditions	70
	4.4	Eigenvalues and Eigenfunctions of a Circle	75
	4.5	Eigenvalues of an Ellipse	81
	4.6	Notes on the Literature	95

DEUTSCHE MATIONAL BIBLIOTHEK

5.	The I	Ray Method "in the Small"	97
•	5.1	Figenfunctions of the Whispering Gallery Type	97
	5.2	Eigenvalues of the Bouncing Ball Type	105
	5.3	Figenvalues of the Whispering Gallery Type	
	0.0	for a Nonconstant Wave Velocity	114
	5.4	Figenvalues of the Bouncing Ball Type	
	•••	for a Nonconstant Wave Velocity	121
	5.5	Notes on the Literature	129
6.	The	Parabolic Equation Method	131
••	6.1	Introductory Remarks	131
	6.2	Derivation of the Parabolic Equation for Eigenfunctions	
		of the Whispering Gallery Type	132
	6.3	Solution of the Parabolic Equation (6.2.9); Asymptotic	
		Expansion of Eigenfunctions of the Whispering Gallery Type	135
	6.4	Derivation of the Basic Parabolic Equation	
		for the Case Where S Is a Ray	138
	6.5	Solution of the Parabolic Equation (6.4.8)	140
	6.6	Notes on the Literature	143
7.	Acv	mptotic Expansions of Eigenfunctions Concentrated Close	
•	to t	he Boundary of a Region	145
	7.1	Introductory Remarks	145
	7.2	Eigenfunctions of the Circle for the Case $c = const$	146
	7.3	Construction of Solutions of the Helmholtz Equation	
		in a Boundary Layer	150
	7.4	Eigenfunctions of the Whispering Gallery Type	161
	7.5	Eigenfunctions of the Region Exterior to Ω	168
	7.6	Justification of the Asymptotic Formulas	173
	7.7	Notes on the Literature	178
8.	Fig	enfunctions Concentrated in the Neighborhood	
0.		n Extremal Ray of a Region	180
	8.1	The Etalon Problem	180
	8.2	Construction of the Principal Terms of the Formal Series	182
	8.3	Construction of the Polynomials α_m and β_m , $m \ge 1$	189
	8.4	•	193
	8.5		
	5.5	of the Eigenvalue Equation	195
	8.6		
	0.0	in the First Approximation	201
	8.7		
		and $\beta_m(s,\nu)$ for $m \ge 1$	208

	0.0	Natural Frequencies of an Open Resonator			
		(Inhomogeneous Filling, Higher Approximations)	211		
	8.9	Notes on the Literature	213		
9.	Eigenfunctions Concentrated in the Vicinity				
	of a	Closed Geodesic	214		
	9.1	Formulation of the Problem and Derivation			
		of the Parabolic Equation	214		
	9.2	The Jacobi Equation for the Geodesic l	220		
	9.3	The Zero-Order Approximation	227		
	9.4	Construction of the Higher Approximations	235		
	9.5	The Eigenfunction Problem in a Three-Dimensional Region .	239		
	9.6	Asymptotic Solution of a System of Elliptic Equations			
	7.0	on a Riemannian Manifold, Concentrated Near a Ray	246		
	9.7	Notes on the Literature	256		
	7.1	Notes on the Literature	230		
10.	Mult	iple-Mirror Resonators	258		
	10.1	The Multiple-Mirror Resonator and Formulation of the Problem	258		
	10.2	Conditions of Resonator Stability in the First Approximation.	261		
	10.3	Some Properties of the Solutions of (10.2.16) on l_N	268		
	10.4	Formulation of the Parabolic Equation for the Problem	270		
	10.5	Integration of the Equation $\mathcal{L}V = 0$	273		
	10.6	Eigenfunctions and Natural Frequencies	07.4		
	10.5	of a Multiple-Mirror Resonator in the First Approximation	274		
	10.7	Construction of the Higher Approximations	278		
	10.8	Notes on the Literature	284		
11.	The	Field of a Point Source Located Near a Convex Curve	285		
	11.1	Introduction	285		
	11.2	The Green's Function for the Exterior of a Circle	286		
	11.3	Creeping Waves Near a Curve with Positive Curvature			
		and Their Extension to Arbitrary Distances	293		
	11.4	An Expression for the Green's Function in Terms			
		of Creeping Waves	297		
	11.5	The Green's Function for the Diffraction Problem			
		at a Cylinder with Variable Impedance	302		
	11.6	Notes on the Literature	305		
10	A .	and the Free continue of the County Free C			
12.		nptotic Expansion of the Green's Function	200		
		Surface Source (the Internal Problem)	306		
	12.1		306		
	12.2	The Ray Formula for Multiply Reflected Waves	307		
	12.3		314		
	12.4	Field of a Source Located on the Boundary of a Circle	326		

12.5	Field of a Surface Source Close to the Concave Boundary	
	of an Inhomogeneous Body	34
12.6	Notes on the Literature	35
13. The	High-Frequency Asymptotics	
of th	e Field Scattered by a Smooth Body	35
13.1	The Etalon Problem	35
13.2	Construction of Approximate Caustic Sums -	
	Equations for the Expansion Coefficients	36
13.3	Asymptotic Evaluation of the Integral I_1 ,	
	in the Vicinity of the Terminator C	37
13.4	Choice of the Initial Data; Fock's Formula	37
13.5	Transformation of the Integrals I_1 and I_2	
	in the Neighborhood of the Light-Shadow Boundary	38
13.6	Calculation of the Derivatives of $\tau^+(M,\gamma)$ and $u^+(M,\gamma)$ on \sum^+	38
13.7	The Fresnel-Fock Formula in the Neighborhood	
	of the Light-Shadow Boundary	38
13.8	Asymptotics of the Field in the Deep Shadow	39
13.9		39
Append	ix	4(
A.1.	The Airy Equation and Airy Functions	40
A.2.		41
A.3.	Solution of the Equation $y''(s) + K(s)y(s) = y^{-3}(s)$	42
A.4.		42
Referen	ces	43
Ch ! a = 4	Turdou	44
Subject	Index	- 44