Contents

1. T	he Ocean as an Acoustic Medium
1.1	Sound Velocity in Sea Water
1.2	Typical Vertical Profiles of Sound Velocity
	and Corresponding Conditions of Sound Propagation
	1.2.1 Underwater Sound Channel (USC)
	1.2.2 Surface Sound Channel
	1.2.3 USC with Two Axes
	1.2.4 Antiwaveguide Propagation
	1.2.5 Propagation of Sound in Shallow Water
1.3	Absorption of Sound
1.4	Variability of the Ocean and Its Effect on Acoustics
	1.4.1 Large-Scale Currents and Frontal Zones
	1.4.2 Synoptic (Meso-Scale) Eddies
	1.4.3 Internal Waves
	1.4.4 Fine Vertical Structure of Waters
	1.4.5 Small-Scale Turbulence
1.5	Ocean Surface
1.6	Sound Scattering at the Ocean Surface
1.7	Sound Scattering by Air Bubbles
1.8	Deep-Scattering Layers (DSL)
1.9	Ocean Bottom
1.10	Ambient Noise
2. R	tay Theory of the Sound Field in the Ocean
2.1	Helmholtz Equation and Its Solution in Two Simple Cases
2.2	Refraction of Sound Rays
2.3	Horizontal Distance Covered by a Ray
2.4	Constant-Gradient Approximation of the Sound Velocity Profile
2.5	Sound Intensity, Focusing Factor and Caustics
2.6	"Three-Dimensional" Refraction
2.7	Snell's Law for the Range-Dependent Ocean
	Reflection of Sound from the Surface and Bottom of the Ocean.
P	Plane Waves
3.1	Reflection and Transmission Coefficients at an Interface
	Separating Two Liquids

	Transmission of a Sound wave from water into Air	- 4
;	and Vice Versa	54
3.3	Sound Wave Reflection from an Ocean Bottom	
	Consisting of Liquid Layers	57
	3.3.1 Reflection from a Homogeneous Layer	57
	3.3.2 Reflection from an Arbitrary Number of Layers	60
2 4	Sound Reflection from a Solid	62
3.4	3.4.1 Analysis of the Reflection Coefficient	65
	3.4.2 Surface Rayleigh and Stonely Waves	66
	Reflection from a Continuously Layered Medium	68
3.5	Reflection from a Continuously Layered Medium	00
	Reflection of Sound from the Surface and Bottom of the Ocean.	
		70
	Point Source	,,
4.1	Sound Field of an Underwater Source	70
	Located near the Water Surface	
	4.1.1 Wave Representations	70
	4.1.2 Ray Representation	71
	4.1.3 Directional Pattern	72
	4.1.4 Radiated Power	74
4.2	Expansion of a Spherical Wave into Plane Waves	76
4.3	Reflected Wave	78
	Lateral Wave	83
	Reflection from the Layered Inhomogeneous Half-Space.	
7.5	Caustics	86
5. 1	Propagation of Sound in Shallow Water	93
5 1	Ray Representation of the Sound Field in a Layer.	
J. I	Image Sources	93
5 2	Integral Representation of the Field in the Layer	96
		97
	Normal Modes in the Ocean with a Perfectly Reflecting Bottom	102
5.4	Relation Between the Different Representations of the Field	
	Normal Modes in a Two-Layered Liquid	103
5.6	Averaged Decay Law	106
	5.6.1 Homogeneous Layer	108
	5.6.2 Layer with Negative Refraction	109
6.	Underwater Sound Channel	111
6.1	Simple Ray Theory of the USC. Trapping Coefficient of the USC	111
	6.1.1 "Linear" Model of the USC	112
	6.1.2 Travel Time	115
6.2	Canonical Underwater Sound Channel	117
6.3	Convergence Zones	119
6.4	Field of a Point Source in the Underwater Sound Channel	
	as a Sum of Normal Waves (Modes)	122
6.5	Integral Representation of the Sound Field in the USC	124

	Contents	ΧI
6.6	Transformation of the Integral Representation	
	into the Sum of Normal Modes	126
	6.6.1 Linear Waveguide	127
6.7	Normal Modes in the WKB Approximation. Phase Integral	131
0.,	6.7.1 Normal Modes and Rays	136
	6.7.2 Spatial Periods of Interference	140
7. R	ange-Dependent Waveguide	146
7.1	Normal Modes in an Almost Stratified Medium.	
	Reference Waveguide Method	146
7.2	Adiabatic Approximation. Ray Invariant	148
	7.2.1 Ray Invariant	149
	7.2.2 An Example of Using the Ray Invariant	152
	7.2.3 Conditions for the Validity	
	of the Adiabatic Approximation and Ray Invariant	154
7.3	Rays in a Horizontal Plane	157
	7.3.1 The Case of a Coastal Wedge	157
7.4	Parabolic Equation Method	160
8. A	ntiwaveguide Sound Propagation	166
8.1	Linear Antiwaveguide Adjacent to Water Surface	166
8.2	Symmetric Antiwaveguide. Quasi-Modes	169
8.3	Symmetric Antiwaveguide. Lateral Wave	178
9. S	cattering of Sound at Rough Surfaces	182
9.1	Rayleigh Parameter	182
9.2	Method of Small Perturbation (MSP)	183
9.3	Average Intensity	186
	9.3.1 An Infinite Surface	186
	9.3.2 Bounded Scattering Surface. Far Zone	187
	9.3.3 Correlation Function of the Scattered Field	189
9.4	Scattering Coefficient for the Ocean Surface	193
9.5	Frequency Spectrum of the Scattered Field	196
9.6	Reflection Coefficient in the Specular Direction	200
9.7	Method of Tangent Plane. Basic Concept	202
9.8	Average Field	204
9.9	Scattering Coefficient of High-Frequency Sound	207
	9.9.1 Scattering Pattern	210
	Frequency Spectrum	213
9.11	Sound Scattering from a Surface with Two Scales	
	of Roughness	215
9.12	Surface Channel with a Rough Boundary	218
	9.12.1 Attenuation Along a Single Ray	219
	9.12.2 Averaged Decay Law for a Coherent Field	221
9.13	Fore-reverberation of Sound in the Ocean	222

XII	Contents

10. Sound Propagation in the Random Ocean	226
10.1 Amplitude and Phase Fluctuations	226
10.1.1 Phase Fluctuations	226
10.1.2 Amplitude Fluctuations	232
10.1.2 Amplitude Pitertaining 10.1.2 Scattering of Sound by Random Inhomogeneities	234
10.2.1 Average Intensity of a Scattered Field	235
10.2.1 Average Intensity of a Scattered 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	238
10.3 Phase Fluctuations due to Internal Waves	241
10.4 Fluctuations in Multipath Propagation	246
11. Scattering and Absorption of Sound by Gas Bubbles in Water	249
11.1 Sound Scattering by a Single Ideal Bubble	249
11.2 Scattering and Absorption of Sound by a Real Bubble	253
11.3 Dispersion of Sound Velocity	257
References	261