

Table of Contents

Self-Diffusion in Polymer Systems, Measured with Field-Gradient Spin-Echo NMR Methods	
E. D. v. Meerwall	1
Photophysics of Excimer Formation in Aryl Vinyl Polymers	
C. W. Frank, S. N. Semerak	31
Fourier Transform Infrared Spectroscopy of Polymers	
J. L. Koenig	87
Author Index Volumes 1-54	
Author Index Volumes 1-54	155
Subject Index	
Subject Index	163

Self-Diffusion in Polymer Systems, Measured with Field-Gradient Spin Echo NMR Methods

Ernst D. von Meerwall

Physics Department, The University of Akron, Akron, Ohio 44325, U.S.A.

List of Symbols and Abbreviations	2
1 Introduction	4
2 Experimental Techniques	5
2.1 Equipment	5
2.2 Experiments	5
3 Capabilities and Limitations	7
3.1 General	7
3.2 Experimental	8
3.3 Range, Resolution, Sensitivity	8
3.4 Distance Scales	9
4 Polymers in the Melt and in Concentrated Solutions	9
5 Polymers in Dilute and Semidilute Solutions	14
6 Light Penetrants and Diluents in Polymers	18
7 Large or Flexible Molecules Dissolved in Polymers	24
8 Conclusions and Outlook	26
9 References	27
10 Appendix A	29
11 References (Appendix A)	29

Photophysics of Excimer Formation in Aryl Vinyl Polymers

Steven N. Semerak and Curtis W. Frank

Department of Chemical Engineering, Stanford University, Stanford, CA 94305,
USA

1	Introduction	33
1.1	Scope of the Review	33
1.2	Photophysical Nomenclature for Rigid Systems	34
2	Photophysical Species and Monochromophoric Processes in Aryl Vinyl Polymers	34
2.1	Absorbing Species	36
2.1.1	Introduction	36
2.1.2	Bichromophoric Model Compounds Containing Phenyl or Naphthyl Rings	36
2.1.3	Polystyrene	37
2.1.3.1	Comparison with Alkyl Benzene Model Compounds	37
2.1.3.2	Identification of In-Chain Impurities	38
2.1.4	Poly(1-vinylnaphthalene) and Poly(2-vinylnaphthalene)	38
2.1.4.1	Comparison with Alkyl Naphthalene Model Compounds	38
2.1.4.2	Identification of In-Chain Impurities	39
2.2	Non-Excimeric Fluorescing Species	40
2.2.1	Introduction	40
2.2.2	Comparison of Bichromophoric and Monochromophoric Compounds	40
2.2.3	Intramolecular Quenching by Carbonyl	42
2.2.4	Influence of Matrix Rigidity and Dissolved Oxygen	42
2.3	Triplet Species	43
2.3.1	Introduction	43
2.3.2	Comparison of Polymeric and Model Compounds	43
2.3.3	Influence of Matrix Rigidity and Dissolved Oxygen	44
2.4	Structure of Excimers and Excimer-Forming Sites	44
2.4.1	Introduction	44
2.4.2	Evidence for the Sandwich Structure for Intermolecular Excimers	45
2.4.2.1	Theoretical Approaches	45

Fourier Transform Infrared Spectroscopy of Polymers

Jack L. Koenig

Department of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.

1	Introduction	89
2	The FT-IR Method	89
3	Comparison of FT-IR with Dispersive Infrared Spectroscopy	95
4	Data Processing Techniques Using Digitized Infrared Spectra	97
4.1	Absorbance Subtraction	97
4.2	Ratio Method	101
4.3	Factor Analysis	103
4.4	Least Squares Curve Fitting for Quantitative Analysis	108
5	Experimental Techniques in FT-IR	108
5.1	FT-IR Transmission Spectroscopy	108
5.2	Diffuse Reflectance Spectroscopy	110
5.3	Internal Reflection Spectroscopy	112
5.4	External Reflection Spectroscopy	112
5.5	Reflection-Absorption Infrared Spectroscopy	113
5.6	Emission Spectroscopy	113
5.7	Photoacoustic Spectroscopy	116
6	Spectroscopic Techniques Using FT-IR	118
6.1	Isolation of Structural Defects by Varying Polymerization Temperature	119
6.2	Isolation of Conformational Structures by Variation in Annealing Conditions	120
6.3	Isolation of Conformational Structures by Varying Measurement Temperature	124
6.4	Isolation of Conformational Structures by Varying Applied Pressure	125
6.5	Use of Isotopic Substitution in FT-IR	126
7	Studies of Polymer Chemistry Using FT-IR	127
7.1	Description of Method	127
7.2	Oxidation of Polymers	127
7.3	Irradiation Damage of Polymers	130
7.4	Mechanical Reversion in Polymers	130