Contents

1.	Intro	duction	1
	1.1	What i	s Synergetics About?
	1.2	Physic	s
		1.2.1	Fluids: Formation of Dynamic Patterns
		1.2.2	Lasers: Coherent Oscillations
		1.2.3	Plasmas: A Wealth of Instabilities
		1.2.4	Solid-State Physics: Multistability, Pulses, Chaos
	1.3	Engine	eering
		1.3.1	Civil, Mechanical, and Aero-Space Engineering:
			Post-Buckling Patterns, Flutter, etc
		1.3.2	Electrical Engineering and Electronics: Nonlinear
			Oscillations
	1.4	Chemi	stry: Macroscopic Patterns 1
	1.5		y 1
		1.5.1	Some General Remarks 1
		1.5.2	Morphogenesis 1
		1.5.3	Population Dynamics 1
		1.5.4	Evolution
		1.5.5	Immune System 1
	1.6	Comp	uter Sciences 1
		1.6.1	Self-Organization of Computers, in Particular
			Parallel Computing 1
		1.6.2	Pattern Recognition by Machines 1
		1.6.3	
	1.7		my
	1.8		gy
	1.9		ogy 1
			are the Common Features of the Above Examples? 1
			ind of Equations We Want to Study
			Differential Equations 1
		1.11.2	First-Order Differential Equations
			Nonlinearity
		1.11.4	Control Parameters
		1.11.5	Stochasticity
			Many Components and the Mezoscopic Approach 2
	1.12		o Visualize the Solutions 2
		-	ative Changes: General Approach
		•	ative Changes: Typical Phenomena

	1.14.1	Bifurcation from One Node (or Focus) into Two Nodes	
		(or Foci)	3
	1.14.2	Bifurcation from a Focus into a Limit Cycle	
		(Hopf Bifurcation)	3
	1.14.3	Bifurcations from a Limit Cycle	3
		Bifurcations from a Torus to Other Tori	4
		Chaotic Attractors	4
	1.14.6	Lyapunov Exponents*	4
1 15	The In	npact of Fluctuations (Noise). Nonequilibrium Phase	
1.15	Transii	tions	4
1 16	Evolut	ion of Spatial Patterns	2
1.10	Discret	te Maps. The Poincaré Map	4
		te Noisy Maps	4
1.10	Dathw	ays to Self-Organization	:
1.19	1 10 1	Self-Organization Through Change of Control	
	1.19.1	Parameters	4
	1 10 2	Self-Organization Through Change of Number of	•
	1.19.2	Self-Organization Through Change of Number of	:
	4 40 2	Components	
	1.19.3	Self-Organization Through Transients	
1.20	How v	We Shall Proceed	
3 T:	O-4:	nary Differential Equations	
	ar Orui	ples of Linear Differential Equations: The Case of a	
2.1			
	_	Variable Linear Differential Equation with Constant	
	2.1.1		
		Coefficient	
	2.1.2	Linear Differential Equation with Periodic	
		Coefficient	
	2.1.3	Linear Differential Equation with Quasiperiodic	
		Coefficient	
	2.1.4	Linear Differential Equation with Real Bounded	
		Coefficient	
2.2		os and Invariance	
2.3	Driver	n Systems	
2.4	Gener	al Theorems on Algebraic and Differential Equations	
	2.4.1	The Form of the Equations	
	2.4.2	Jordan's Normal Form	
	2.4.3	Some General Theorems on Linear Differential	
		Equations	
	2.4.4	Generalized Characteristic Exponents and	
	• • • •	Lyapunov Exponents	
2.5	Forwa	ard and Backward Equations: Dual Solution Spaces	
2.6	Linea	r Differential Equations with Constant Coefficients	
2.7	Linea	r Differential Equations with Periodic Coefficients	
2.8	Grou	p Theoretical Interpretation	
2.9	Dertu	rbation Approach*	
۷.۶	rcitu	Tourion Approach	

		Contents
ł	Line	ar Ordinary Differential Equations with Quasiperiodic
,		ificients*
	3.1	Formulation of the Problem and of Theorem 3.1.1
	3.2	Auxiliary Theorems (Lemmas)
	3.3	Proof of Assertion (a) of Theorem 3.1.1: Construction of a
	3.3	Triangular Matrix: Example of a 2 × 2 Matrix
	3.4	Proof that the Elements of the Triangular Matrix C are
	3.4	Ouasiperiodic in τ (and Periodic in φ_i and C^k with Respect to φ):
		Example of a 2 \times 2 Matrix
	2.5	
	3.5	Construction of the Triangular Matrix C and Proof that Its
		Elements are Quasiperiodic in τ (and Periodic in φ_j and C^k with
		Respect to φ): The Case of an $m \times m$ Matrix, all λ 's Different
	3.6	Approximation Methods. Smoothing
		3.6.1 A Variational Method
		3.6.2 Smoothing
	3.7	The Triangular Matrix C and Its Reduction
	3.8	The General Case: Some of the Generalized Characteristic
		Exponents Coincide
	3.9	Explicit Solution of (3.1.1) by an Iteration Procedure
_	C4	bestic Newlinean Differential Equations
4.		chastic Nonlinear Differential Equations
	4.1	An Example
	4.2	The Îto Differential Equation and the Îto-Fokker-Planck
		Equation
	4.3	The Stratonovich Calculus
	4.4	Langevin Equations and Fokker-Planck Equation
5	The	World of Coupled Nonlinear Oscillators
٠,	5.1	
	J.1	5.1.1 Linear Oscillators with Linear Coupling
		5.1.2 Linear Oscillators with Nonlinear Coupling. An Example.
		Frequency Shifts
	5.3	Perturbations of Quasiperiodic Motion for Time-Independent
	5.2	Amplitudes (Quasiperiodic Motion Shall Persist)
		Amplitudes (Quasiperiodic Motion Shan Feisist)
	5.3	Some Considerations on the Convergence of the Procedure*
6.	. Noi	ilinear Coupling of Oscillators: The Case of Persistence
	of (Quasiperiodic Motion
	6.1	The Problem
	6.2	Moser's Theorem (Theorem 6.2.1)
	6.3	· · · · · · · · · · · · · · · · · · ·
	0.3	The iteration i roccurre
7.	. Noi	ılinear Equations. The Slaving Principle
	7.1	An Example
		7.1.1 The Adiabatic Approximation
		7.1.2 Exact Elimination Procedure
	7.3	The Coneral Form of the Slaving Principle Basic Equations

XIV	Contents
XIV	Contents

	7.3	Formal Relations	198			
	7.4	The Iteration Procedure	202			
	7.5	An Estimate of the Rest Term. The Question of Differentiability	205			
	7.6	Slaving Principle for Discrete Noisy Maps*	207			
	7.0 7.7	Formal Relations*	208			
		The Iteration Procedure for the Discrete Case*	214			
	7.8	Slaving Principle for Stochastic Differential Equations*	216			
	7.9	Slaving Principle for Stochastic Differential Equations	210			
8.	Nonlinear Equations. Qualitative Macroscopic Changes					
	8.1	Bifurcations from a Node or Focus. Basic Transformations	222			
	8.2	A Simple Real Eigenvalue Becomes Positive	224			
	8.3	Multiple Real Eigenvalues Become Positive	228			
	8.4	A Simple Complex Eigenvalue Crosses the Imaginary Axis.				
		Hopf Bifurcation	230			
	8.5	Hopf Bifurcation, Continued	233			
	8.6	Frequency Locking Between Two Oscillators	239			
	8.7	Bifurcation from a Limit Cycle	242			
	8.8	Bifurcation from a Limit Cycle: Special Cases	247			
	0.0	8.8.1 Bifurcation into Two Limit Cycles	247			
		8.8.2 Period Doubling	249			
		8.8.3 Subharmonics	249			
		8.8.4 Bifurcation to a Torus	251			
	8.9	Bifurcation from a Torus (Quasiperiodic Motion)	253			
		Bifurcation from a Torus: Special Cases	258			
	8.10	8.10.1 A Simple Real Eigenvalue Becomes Positive	258			
		8.10.2 A Complex Nondegenerate Eigenvalue Crosses the				
		Imaginary Axis	260			
	Ω 11	Instability Hierarchies, Scenarios, and Routes to Turbulence	264			
	0.11	8.11.1 The Landau-Hopf Picture	264			
		8.11.2 The Ruelle and Takens Picture	265			
		8.11.3 Bifurcations of Tori. Quasiperiodic Motions	265			
		8.11.4 The Period-Doubling Route to Chaos. Feigenbaum				
		Sequence	266			
		8.11.5 The Route via Intermittency	266			
		8.11.5 The Route via Intermittency	200			
9.	Spat	ial Patterns	267			
	9.1	The Basic Differential Equations	267			
	9.2	The General Method of Solution	270			
	9.3	Bifurcation Analysis for Finite Geometries	272			
	9.4	Generalized Ginzburg-Landau Equations	274			
	9.5	A Simplification of Generalized Ginzburg-Landau Equations.				
	- ••	Pattern Formation in Bénard Convection	278			
10	TL.	Inclusion of Noise	283			
10.			28:			
	10.1	The General Approach	28			
	10.2	A Simple Example	40.			

Subject Index

351