Contents

1.	Intro	duction	1	
2.	Phen	omenology of Bioenergetic Processes	4	
	2.1	Muscle Contraction	4	
	2.2	Active Transport of Ions	11	
	2.3	Substrate Phosphorylation	13	
	2.4	Membrane Phosphorylation	17	
	2.5	Formulation of the Main Physical Problems in Bioenergetics	28	
3.	Memi	brane Phosphorylation: Chemiosmotic Concept and Other Hypotheses	30	
	3.1	Survey of Existing Hypotheses	30	
		What is the Meaning of the Words: "Energy Coupling of Chemical		
	3.2	Reactions"?	38	
	3.3	Transmembrane Electrochemical Potential, its Components and		
	3.3	Physical Principles of its Utilization in Bioenergetic Processes	46	
	3.4	Tunomimontal Data Pro and Contra	50	
	3.4	3.4.1 Methods of Δψ Measurements	51	
		3.4.2 ΔpH , $\Delta \psi$, $\Delta \mu_{H^+}$ Values and Phosphorylation in Membrane		
		Energy-Transducing Systems	56	
		3.4.3 Membrane Phosphorylation Caused by Various Types of "Strokes"	64	
и	Pro	teins as Molecular Machines	69	
C. C. 11 Making				
	4.1	Chatag of Proteins	73	
	4.2	chabas of Motal Containing Proteins Trapped		
		at Low Temperatures in a Frozen Matrix	76	
		Chaban of Motal Containing Proteins Recorded		
		at Room Temperatures, and Kinetics of Their Relaxation	85	
		to a second of Motalloproteins in Conformationally		
		Nonequilibrium States	89	
		of Molecules or Nonequilibrium Molecules:	92	
	4.3	3 Monedail (b) Idili Mixedia of the 1999 1999	ΙX	

5.			hal Relaxation as the Elementary Act of Bloenergetic	94		
	Processes					
	5.1	Muscle	Contraction	94		
		5.1.1	The Simplest Quantum-Mechanical Machine Proposed by Gray			
			and Gonda	96		
		5.1.2	Model: Two Particles in a Box with a Movable Partition	101		
		5.1.3	Automatic Regulation in a Model of the Quantum-Mechanical			
			Machine	101		
	5.2	Active	Transfer of Ions	104		
	5.3	Enzyma	tic Catalysis	107		
		5.3.1	Relaxation Concept of a Catalytic Act	107		
		5.3.2	Coherent Phonons and Catalytic Transformation	108		
		5.3.3	Free Energy Change During Chemical Transformation and the			
			Conditions in which Machine Mechanisms are Advantageous	109		
	5.4	Membra	ne Phosphorylation	110		
		5.4.1	Model of a Redox Molecular Machine	111		
		5.4.2	Certain Corollaries Arising from the Relaxation Concept of			
			Membrane Phosphorylation	114		
6.	Con	clusion		119		
R	efere	nces		12		
c.	thier	t Index		131		