Contents

1	Hypotheses Concerned with Regeneration in the Mammalian Central Nervous System	1
1.1	Introduction	1
1.2 1.2.1 1.2.2	Histopathological Response to Trauma	1 1 2
1.2.3	CNS of Mammalian Vertebrates	4
1.3	Successful Regeneration of Some Neurons in the Mammalian CNS	5
1.4	Hypotheses to Explain the Limited Regenerative Capacity of CNS Neurons	6
1.4.1	Intrinsic Inability of CNS Neurons to Regenerate?	6
1.4.2	Formation of Inappropriate Synapses	6
1.4.3	Autoimmune Inhibition of Regenerative Attempts	7
1.4.4	Progressive Necrosis at the Lesion Site and the Formation of Cystic Cavities	8
1.4.5	Proliferation of Fibroblasts, Neuroglial and Endothelial Cells at the Lesion Site	10
1.4.6	Absence of Schwann Cells in the CNS as Guides for Regenerating Axons	10
1.4.7	Necessity of an Ependymal - Mesenchymal Interaction	10
1.4.8	Incompatibility Between the Neuronal Processes and the Non-neuronal Cells of the CNS	11
1.4.9	Inhibition of Axonal Growth by Post-injury Myelin Breakdown Products	11
1.4.10	A Lack of Periaxonal Vascular Permeability	11
1.4.11	An Absence of Requisite Growth Factors	12
1.4.12	Ineffective Somal Response by CNS Neurons to	
	Axotomy	12
1.4.13	Necessity of Recent or Continued Neurogenesis	13
2	In Vivo Experimental Approaches to Hypotheses Concerned with Regeneration in the Mammalian CNS	15
2.1	Introduction	15

2.2	Submammalian Vertebrates	15
2.2.1	Inappropriate Synaptogenesis	15
2.2.2	Non-neuronal Environment	16
2.2.3	Somal Response	19
2.2.4	Vascular Permeability	20
2.2.5	Necessity of Recent or Continued Neurogenesis	20
2.3	Developmental Events in Mammals	21
2.3.1	Non-neuronal Environment	21
2.3.2	Necessity of Recent or Continued Neurogenesis	25
2.3.3	Vascular Permeability	25
2.4	Morphological and Biochemical Assessment of	
	Regeneration in Mammals	26
2.4.1	Inappropriate Synaptogenesis	26
2.4.2	Necrosis and Cyst Formation	27
2.4.3	Neuroglial Scar Tissue	27
2.4.4	Auto-immune Hypothesis	30
2.4.5	A Role for Schwann Cells?	31
2.4.6	Myelin Breakdown Products	31
2.4.7	A Need for Vascular Permeability?	31
2.4.8	Somal Response	34
2.5	The Use of Transplants	36
2.5.1	Peripheral Nerve Transplants	36
2.5.2	Transplants of Fetal Mammalian CNS Tissue	39
2.5.3	Transplantation Studies of Amphibian and	
254	Mammalian Glial Scar Tissue	40
2.5.4	Schwann Cell Transplants to the PNS and CNS	41
2.5.5	Transplants of Non-nervous Tissue	42
2.5.6	Transplants of Autonomic Ganglia to the CNS	42
2.5.7	Transplants of Non-cellular Conduits	44
2.6	Pharmacological Approaches	44
2.6.1	Piromen	44
2.6.2	Adrenocorticotrophic Hormone	45
2.6.3	Enzyme Treatment	45
2.6.4	Tri-iodothyronine and L-thyroxine	46
2.6.5	Immunosuppressants	46
2.6.6	Dimethyl Sulphoxide	46
2.6.7	Puromycin	47
2.6.8	Gangliosides	48
2.6.9	Nerve Growth Factor	48
2.6.10	Cytosine Arabinoside	49
2.7	Conclusions	50
3	In Vitro Experimental Approaches to Hypotheses Con-	
	cerned with Regeneration in the Mammalian CNS	51
3.1	Introduction	51
		٠.

Cubicat	Today	110
Referen	ces	93
4	Conclusions	91
	Neurite Outgrowth	84
3.5.4	gens	81
3.5.3	Adhesiveness in the Support of Neurite Elongation In Vivo-Derived CNS Wound Fluid and Glial Mito-	79
3.5.2	Non-neuronal Cells - Differential Substrate	
3.5.1	The Non-neuronal Cells	77 77
3.5	The Role of the Microenvironment -	
3.4.6	Gangliosides	77
3.4.5	Hormonal NPFs	76
3.4.4	Fibroblast Growth Factors	73
3.4.3	NPFs and CNS Wounds	73
3.4.2	NPFs in Conditioned Media	70
3.4.1	Humoral Neurite-Promoting Factors NGF and NGF-Like Molecules	66 66
3.4	The Role of the Microenvironment -	
3.3.4	Basal Lamina Constituents	64
3.3.3	Substrate-Bound Neurite Promoting Factors	63
3.3.1 3.3.2	Mechanism of Neurite Growth	60 61
3.3	The Role of the Microenvironment – The Substrate and Substrate-Bound Neurite Promoting Factors	60
3.2.5	Hormonal NTFs	57
3.2.4	Fibroblast Growth Factors	56
3.2.3	In Vivo-Derived PNS and CNS Wound Fluid	55
3.2.2	In Vitro-Conditioned Media	54
3.2.1	NGF and Other NTFs	52
3.2	The Role of the Microenvironment – Neuronotrophic Factors	52