Contents

Preface ---- V

1	Introduction —— 1
2	Load disturbance rejection problem —— 6
2.1	Control structure and assumptions —— 6
2.2	Feedback control analysis —— 8
2.3	Conclusions —— 13
3	Feedforward control —— 14
3.1	Basis of feedforward control —— 14
3.2	Inversion problems —— 17
3.3	Classical solutions to inversion problems —— 20
3.4	New solutions to the inversion problems —— 23
4	Tuning rules for delay inversion problems —— 25
4.1	Preliminaries —— 25
4.2	Tuning rules for classical control scheme —— 28
4.3	Tuning rules for non-interacting control scheme —— 52
4.4	Tuning rules – Summary and comparison —— 58
5	Tuning rules for RHP zeros and integrators —— 73
5.1	Tuning rules for processes with right-half plane zeros —— 73
5.2	Tuning rules for integrating processes —— 77
6	Performance indices for feedforward control —— 83
6.1	Performance index —— 83
6.2	Examples and analysis —— 87
7	Feedforward implementation —— 96
7.1	Basic implementation of feedforward control —— 97
7.2	Control signal saturation —— 100
7.3	Improved feedforward saturation handling —— 107
7.4	Mode switching and bumpless transfer —— 109
7.5	Noise filtering —— 116
7.6	Feedforward combined with cascade control —— 118
7.7	Smith Predictor —— 127
7.8	Robustness —— 129

VIII — Contents

8	Case studies —— 131
8.1	Two-tank level system —— 131
8.2	Solar collector field —— 132
8.3	Room temperature —— 134
8.4	Jacket reactor temperature —— 135
8.5	DC motor position —— 138
9	Experimental evaluation —— 140
9.1	Greenhouse temperature control problem —— 140
9.2	Greenhouse description —— 141
9.3	Low-order models for control purposes —— 142
9.4	Calculation of the feedback controller and the feedforward compensators —— 144
9.5	Experimental control tests at the greenhouse —— 147
9.6	Discussion —— 155
Tunin	g rules summary —— 157

Tuning rules summary —— 157

Bibliography —— 160

Index —— 163