CONTENTS

Chapter I. Differential Manifolds

A. From Submanifolds to Abstract Manifolds	
Submanifolds of \mathbf{R}^{n+k}	:
Abstract manifolds	(
Smooth maps	1
B. Tangent Bundle	
Tangent space to a submanifold of \mathbb{R}^{n+k}	1
The manifold of tangent vectors	1
Vector bundles	10
Differential map	1
C. Vector Fields	
Definitions	18
Another definition for the tangent space	19
Integral curves and flow of a vector field	2
Image of a vector field under a diffeomorphism	2
D. Baby Lie Groups	
Definitions	2'
Adjoint representation	29
E. Covering Maps and Fibrations	
Covering maps and quotient by a discrete group	29
Submersions and fibrations	3
Homogeneous spaces	33
F. Tensors	
Tensor product (digest)	36
Tensor bundles	
Operations on tensors	37
Lie derivatives	
Local operators, differential operators	
A characterization for tensors	40

X Contents

G. Exterior Forms	
Definitions Exterior derivative Volume forms Integration on an oriented manifold Haar measure on a Lie group	46 47
H. Appendix: Partitions of Unity	48
Chapter II. Riemannian Metrics	
A. Existence Theorems and First Examples	
Definitions First examples Examples: Riemannian submanifolds, product Riemannian manifolds Riemannian covering maps, flat tori Riemannian submersions, complex projective space Homogeneous Riemannian spaces	52 54 58 59 63 65
B. Covariant Derivative	
Connections Canonical connection of a Riemannian submanifold Extension of the covariant derivative to tensors Covariant derivative along a curve Parallel transport Examples	69 72 73 75 77 78
C. Geodesics	
Definitions Local existence and uniqueness for geodesics, exponential map Riemannian manifolds as metric spaces Complete Riemannian manifolds, Hopf-Rinow theorem Geodesics and submersions, geodesics of P ⁿ C Cut locus	80 83 87 94 97
	100
Chapter III. Curvature	
A. The Curvature Tensor	
Second covariant derivative Algebraic properties of the curvature tensor Computation of curvature: some examples Ricci curvature, scalar curvature	107 108 109 111
B. First and Second Variation of Arc-Length and Energy	
Technical preliminaries: vector fields along parameterized submanifolds	112

Contents	XI

First variation formula Second variation formula	114 116
C. Jacobi Vector Fields	
Basic topics about second derivatives	118
Index form	119
Jacobi fields and exponential map	121
Applications: S^n , H^n , P^n R , 2-dimensional Riemannian manifolds	122
D. Riemannian Submersions and Curvature	
Riemannian submersions and connections	124
Jacobi fields of $P^n\mathbf{C}$	125
O'Neill's formula	127
Curvature and length of small circles.	
Application to Riemannian submersions	128
E. The Behavior of Length and Energy in the Neighborhood of a Geodesic	
3	
The Gauss lemma	130
Conjugate points	131
Some properties of the cut-locus	134
F. Manifolds with Constant Sectional Curvature	
Spheres, Euclidean and hyperbolic spaces	135
G. Topology and Curvature	
The Myers and Hadamard-Cartan theorems	137
H. Curvature and Volume	
Densities on a differentiable manifold	139
Canonical measure of a Riemannian manifold	140
Examples: spheres, hyperbolic spaces, complex projective spaces	142
Small balls and scalar curvature	143
Volume estimates	144
I. Curvature and Growth of the Fundamental Group	
Growth of finite type groups	148
Growth of the fundamental group of compact manifolds	110
with negative curvature	149
J. Curvature and Topology:	
An Account of Some Old and Recent Results	
Introduction	151
Traditional point of view: pinched manifolds	151
Almost flat pinching	153
Coarse point of view: compactness theorems of Cheeger and Gromov	153

XII Contents

of the Orthogonal Group	
Decomposition of the space of curvature tensors Conformally flat manifolds The second Bianchi identity	154 157 158
L. Hyperbolic Geometry	
Introduction Angles and distances in the hyperbolic plane Polygons with "many" right angles Compact surfaces Hyperbolic trigonometry Prescribing constant negative curvature	159 159 164 166 168 172
M. Conformal Geometry	
Introduction The Moebius group Conformal, elliptic and hyperbolic geometry	174 174 177
Chapter IV. Analysis on Manifolds and the Ricci Curvature A. Manifolds with Boundary	
Definition	101
The Stokes theorem and integration by parts	181 182
B. Bishop's Inequality Revisited	102
Some commutations formulas Laplacian of the distance function Another proof of Bishop's inequality The Heintze-Karcher inequality	185 186 187 188
C. Differential Forms and Cohomology	100
The de Rham complex Differential operators and their formal adjoints The Hodge-de Rham theorem A second visit to the Bochner method	190 190 193 194
D. Basic Spectral Geometry	134
The Laplace operator and the wave equation Statement of the basic results on the spectrum	196 198
E. Some Examples of Spectra	
Introduction The spectrum of flat tori Spectrum of (S^n, can)	199 200 201

Contents	XIII
F. The Minimax Principle	
The basic statements	203
G. The Ricci Curvature and Eigenvalues Estimates	
Introduction	207
Bishop's inequality and coarse estimates	207
Some consequences of Bishop's theorem	208
Lower bounds for the first eigenvalue	210
H. Paul Levy's Isoperimetric Inequality	
Introduction	212
The statement The proof	212 213
The proof	213
Chapter V. Riemannian Submanifolds	
A. Curvature of Submanifolds	
Introduction	217
Second fundamental form	217
Curvature of hypersurfaces Application to explicit computations of curvatures	219 221
	221
B. Curvature and Convexity	
The Hadamard theorem	224
C. Minimal Surfaces	
First results	227
Some Extra Problems	232
Some David I Toblems	202
Solutions of Exercises	
Chapter I	234
Chapter II	244
Chapter III	261
Chapter IV	266
Chapter V	268
Diblia mana bar	070
Bibliography	272
Index	270
Index	279