Contents

I.	intro	oauction	1	ı
2.	Com	puter S	Simulation Methods	5
	2.1	Essenti	al Features of Simulation Methods	5
		2.1.1	Ensemble Averages on a Computer	6
		2.1.2	Simulation Algorithms	6
	2.2	The M	onte Carlo Algorithm	8
		2.2.1	Simple Sampling	8
		2.2.2	Importance Sampling	9
		2.2.3	Interpretation of the Monte Carlo Process	
			as a Dynamical Process	11
	2.3	Molecu	ılar Dynamics	13
		2.3.1	The Microcanonical Ensemble	14
		2.3.2	Discretization and Systematic Effects	15
		2.3.3	Molecular Dynamics Algorithms	17
	2.4	Hybrid	Molecular Dynamics	18
	2.5	Accura	cy Considerations and Finite-Size Problems	21
		2.5.1	Choosing the Boundary Conditions	21
		2.5.2	Effects of Finite Simulation Time	22
		2.5.3	Statistical Errors and Self-Averaging	23
		2.5.4	Finite-Size Scaling: Using Finite-Size Effects	24
	2.6	Monte	Carlo Algorithm for the Ising Model	25
		2.6.1	The Ising Model	26
		2.6.2	Implementing the Monte Carlo Algorithm	
			for the Ising Model	27
		2.6.3	The Swendsen-Wang Algorithm and the Equivalence	
			Between the Ising Model and Percolation	28
		2.6.4	Cluster Identification	
		2.6.5	Other Cluster Update Algorithms	
			•	
3.	Phys	sics and	Parallelism	37
4.	Con		Parallelism	
	4.1	Some	Basic Definitions	
	4.2	The Co	omplexity of Computation	45

KΠ	Contents

	4.3	More on Models and Methods	46
	4.4	Performance Measurements	49
5.	Para	allel Machines and Languages	51
	5.1	General Purpose Parallel Computers	51
		5.1.1 Processor Concepts	51
		5.1.2 Communication Networks	53
	5.2	Parallel Machines for Special Physics Problems	58
		5.2.1 Monte Carlo Machines	59
		5.2.2 Molecular Dynamics Computers	63
	5.3	Languages for Parallel Computers	64
	5.4	The Matching Problem	66
6.	Rep	lication Algorithms	71
7.	Geo	metrically Parallel Algorithms	75
	7.1	Geometric Parallelization	76
	7.2	Strips, Squares and Checker-Boards	79
		7.2.1 Detailed Balance and the Checker-Board	79
		7.2.2 Strips	80
		7.2.3 Squares	82
		7.2.4 Communication Procedures	83
		7.2.5 Timing and Efficiency Considerations	84
		7.2.6 Geometric Parallelism in Higher Dimensions	85
	7.3	Non-local and Cluster Algorithms	87
		7.3.1 Parallel Algorithms for Cluster Identification	87
		7.3.2 The Public Stack Cluster Algorithm	88
		7.3.3 The Binary Tree Cluster Algorithm	89
		7.3.4 Performance Measurements	90
	7.4	Parallel Molecular Dynamics Algorithms	91
		7.4.1 Short-Range vs Long-Range Interactions	91
		7.4.2 A Geometrically Parallelized Algorithm for Molecular	
		Dynamics	93
	7.5	Hybrid Molecular Dynamics	94
	7.6	Polymers on the Lattice	95
		7.6.1 Single Polymers	96
		7.6.2 Dense Polymer Systems	97
	7.7		100
	7.8		101
	7.9		101
8.	Data	Parallel Algorithms	105
	8.1	Data Parallel Algorithm for Long-Range Interactions	เกร
	8.2	Polymers	106

						C	oni	ten	ıts				XI
. Intr	oductio	n to a Parallel Language											11
9.1	Transp	uter-Based Parallel Machines											11
9.2	Paralle	el Programming in Occam											11
	9.2.1	The Process and the Channel Conc	ept	š.									11
	9.2.2	Two Elementary Processes											11
	9.2.3	A Trivial Example											12
	9.2.4	Repetition and the Conditional											12
	9.2.5	An Occam Program for the Ising N	/lod	el									12
	9.2.6	More on Choices and Selection											
	9.2.7	Further Language Elements											13
	9.2.8	Arithmetic											
	9.2.9	Placements			•					•	•	•	14
App	endices												14
A.	A Para	allel Ising Model Program											14
В.		m Number Generator											
C.	A Par	allel Molecular Dynamics Program .											15
eferer	ices												17
uhiect	Index												17