Contents

Introduction --- V

Notations and abbreviations ---- XVII

1	Periodically stationary multi-seasonal increments of stochastic
	sequences —— 1
1.1	Stochastic sequences with periodically stationary generalized multiple increments —— 1
1.1.1	Generalized multiple increment sequence — 1
1.1.2	Definition and spectral representation of periodically stationary GM increments —— 3
1.1.3	Moving average representation of vector stationary GM increment —— 8
1.2	Stochastic sequences with fractional multiple increments —— 10
2	Extrapolation of sequences with periodically stationary increments —— 15
2.1	Hilbert space projection method of extrapolation —— 15
2.1.1	Extrapolation of multidimensional stationary GM increment —— 15
2.1.2	Estimates of the functional $A_N \vec{\xi}$ and the value $\xi_p(N)$ —— 22
2.1.3	Extrapolation of sequences with periodically stationary GM increment —— 27
2.1.4	Extrapolation of sequences with FM increments —— 28
2.1.5	Examples of forecasting for some special models —— 29
2.2	Minimax (robust) method of extrapolation —— 35
2.2.1	Least favorable spectral density and minimax-robust spectral
	characteristic —— 35
2.2.2	Least favorable spectral densities in classes \mathcal{D}_0 —— 38
2.2.3	Least favorable spectral densities in classes \mathcal{D}_{V}^{U} —— 40
2.2.4	Least favorable spectral densities in classes $\mathcal{D}_{\varepsilon}$ — 42
2.2.5	Least favorable spectral densities in classes $\mathcal{D}_{1\delta}$ —— 44
3	Extrapolation of sequences with periodically stationary increments
	observed with noise —— 48
3.1	Hilbert space projection method of extrapolation —— 48
3.1.1	Extrapolation of multidimensional sequences with stationary GM
	increments —— 48
3.1.2	Extrapolation of sequences with FM increments —— 59
3.1.3	Extrapolation based on factorizations of spectral densities —— 59
3.1.4	Extrapolation of stochastic sequences with periodically stationary increment —— 66
3.1.5	Extrapolation of cointegrated vector stochastic sequences —— 68
3.2	Minimax (robust) method of extrapolation —— 72

3.2.1	Least favorable spectral densities and minimax-robust spectral characteristic —— 72
3.2.2	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_V^U$ — 77
3.2.3	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_v^u$ for cointegrated vector sequences —— 81
3.2.4	Least favorable spectral densities in classes $\mathcal{D}_{\varepsilon} \times \mathcal{D}_{1\delta}$ —— 83
3.2.5	Least favorable densities for cointegrated sequences in classes
	$\mathcal{D}_{\varepsilon} \times \mathcal{D}_{1\delta}$ — 88
4	Interpolation of sequences with periodically stationary increments
	observed with or without noise —— 92
4.1	Hilbert space projection method of interpolation —— 93
4.1.1	Interpolation of multidimensional stochastic sequences with stationary GM
	increment based on observations with stationary vector-valued noise —— 93
4.1.2	Interpolation of multidimensional stationary GM increments from
	observations without noise —— 100
4.1.3	Interpolation of sequences with FM increments —— 103
4.1.4	Interpolation of stochastic sequences with periodically stationary GM
	increment with and without periodically stationary noise —— 104
4.2	Minimax (robust) method of interpolation —— 105
4.2.1	Least favorable spectral densities and minimax-robust spectral
	characteristic —— 105
4.2.2	Least favorable spectral densities in classes $\mathcal{D}_0 imes \mathcal{D}_{arepsilon}$ — 109
4.2.3	Least favorable spectral densities in classes \mathcal{D}_0 —— 112
4.2.4	Least favorable spectral densities in classes $\mathcal{D}_{1\delta} \times \mathcal{D}_V^U$ —— 113
4.2.5	Least favorable spectral densities in classes $\mathcal{D}_{1\delta}$ —— 116
5	Filtering of sequences with periodically stationary increments —— 120
5.1	Hilbert space projection method of filtering —— 120
5.1.1	Filtering of multidimensional stochastic sequences with stationary GM increment —— 120
5.1.2	Filtering of sequences with FM increments —— 127
5.1.3	Filtering based on factorizations of the spectral densities —— 127
5.1.4	Filtering of stochastic sequences with periodically stationary GM increment —— 133
5.2	Minimax (robust) method of filtering —— 136
5.2.1	Least favorable spectral densities and minimax-robust spectral
'	characteristic — 136
5.2.2	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_V^U$ —— 140
5.2.3	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_{1\delta}$ —— 143
5.2.4	Semi-uncertain filtering problem in classes $\mathcal{D}_{\varepsilon}$ with known noise sequence density —— 145

6	Continuous time stochastic processes with periodically correlated increments —— 150
6.1	Periodically correlated processes and generated vector stationary sequences —— 150
6.2	Stochastic processes with periodically correlated dth increments —— 152
6.2.1	Definition and spectral representation of generated stationary increment —— 152
6.2.2	Moving average representation of generated stationary increment —— 155
7	Extrapolation of processes with periodically correlated increments —— 157
7.1	Generated stationary increment sequence representation of the functional $A\xi$ — 157
7.2	Extrapolation problem: the greatest value of the MSE —— 161
7.3	Hilbert space projection method of extrapolation —— 163
7.4	Minimax (robust) method of extrapolation —— 168
7.4.1	Least favorable spectral density and minimax-robust spectral characteristic —— 168
7.4.2	Least favorable spectral density in classes \mathcal{D}_0 — 170
7.4.3	Least favorable spectral density in classes $\mathcal{D}_{1\delta}$ —— 171
8	Extrapolation of processes with periodically correlated increments
	observed with noise —— 175
8.1	Hilbert space projection method of extrapolation —— 175
8.1.1	Extrapolation based on Fourier transformations of spectral densities —— 175
8.1.2	Extrapolation based on factorizations of spectral densities —— 187
8.2	Minimax (robust) method of extrapolation —— 190
8.2.1	Least favorable spectral densities and minimax-robust spectral characteristic —— 190
8.2.2	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_{1\delta}$ —— 194
8.2.3	Least favorable spectral densities in classes $\mathcal{D}_{\varepsilon} \times \mathcal{D}_{V}^{U}$ —— 199
9	Interpolation of processes with periodically correlated increments observed with or without noise —— 204
9.1	Hilbert space projection method of interpolation —— 204
9.1.1	Interpolation of stochastic processes with periodically stationary d th
	increments observed with periodically stationary noise —— 204
9.1.2	Interpolation of stochastic processes with periodically stationary d th
	increments observed without noise —— 213
9.2	Minimax-robust method of interpolation —— 215
9.2.1	Least favorable spectral densities and minimax-robust spectral
'	characteristic — 215
9.2.2	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_V^U$ —— 219

XVI — Contents

9.2.3	Example of the least favorable spectral density in the class \mathcal{D}_0^- — 222
9.2.4	Least favorable spectral density in the class $\mathcal{D}_{\mathbf{V}}^{U}$ —— 224
10	Filtering of processes with periodically correlated increments —— 227
10.1	Hilbert space projection method of filtering —— 227
10.2	Minimax (robust) method of filtering —— 234
10.2.1	Least favorable spectral densities and minimax-robust spectral characteristic —— 234
10.2.2	Least favorable spectral densities in classes $\mathcal{D}_0 \times \mathcal{D}_V^U$ —— 236
10.2.3	Least favorable spectral densities in classes $\mathcal{D}_{1\delta} \times \mathcal{D}_{\varepsilon}$ —— 240
11	Filtering problem when signal and noise have periodically correlated
	increments —— 245
11.1	Hilbert space projection method of filtering —— 245
11.1.1	Filtering based on Fourier transformations of spectral densities —— 245
11.1.2	Filtering based on factorizations of the spectral densities —— 253
11.2	Minimax filtering based on observations with periodically stationary increment noise —— 261
11.2.1	Least favorable spectral densities and minimax-robust spectral characteristic —— 261
11.2.2	Least favorable spectral densities in classes $D_0 \times \mathcal{D}_{\varepsilon}$ —— 265
11.2.3	Semi-uncertain filtering problem in classes \mathcal{D}_0 —— 268
Problei	ms —— 271

Some models of non-stationary time series —— 279 Α

Bibliography —— 281

Index ---- 291