Field-Ion Microscopy in Materials Science

1	Introduction	3
2	Principles of FIM technique	5
	2.1 Specimen Preparation	5
	2.2 Operation of the Field-Ion Microscope	7
	2.3 Image Formation	7
	2.4 Some Aspects of Field Evaporation	12
	2.5 Mechanical Stresses Exerted by the Applied Field	19
	2.6 Image Contrast of Alloys	21
	2.6.1 Disordered Solid Solutions	21
	2.6.2 Long-Range Ordered Alloys	23
	2.6.3 Decomposed Alloys	25
	2.6.4 Vacancies and Interstitial Atoms	27
	2.7 Magnification and Resolution of the FIM	30
	2.7.1 Magnification	30
	2.7.2 Resolution	33
3	Single-Atom Mass Spectroscopy in Connection with FIM	34
,	3.1 The Atom-Probe FIM	34
	3.2 Analysis of Atom-Probe Data	35
		42
		44
	3.4 The High-Resolution Energy-Focusing Atom Probe	45
	3.5 The Field-Desorption Microscope and the Imaging Atom Probe	43

^{*} Habilitationsschrift, Univ. Göttingen

4	App	lications and Results
		Overview of Defect Analyses by Means of FIM and Atom Probe 48
		Point Defects
		4.2.1 Some General Remarks
		4.2.2 Studies of Thermal Vacancies
		4.2.3 Interstitial Impurities
		4.2.4 Short-Range Order and Clustering
	4.3	Radiation Induced Defects
		4.3.1 Some General Remarks
		4.3.2 Defect Structure Generated by Ion Impact
		4.3.3 Radiation Damage Created by Neutrons
		4.3.4 Analyses of Recovery after Irradiation
		4.3.5 Composition Profiles of Implanted Species 6.
	4.4	Disorder-Order Transformation
	4.5	Interfaces
		4.5.1 Structure and Topography of Grain Boundaries 69
		4.5.2 Interphase Interfaces
		4.5.3 Interface Segregation
	4.6	Precipitation
		4.6.1 Some General Remarks
		4.6.2 Phase Separation by Nucleation and Growth
		4.6.3 Spinodal Decomposition
	4.7	Semiconductors
	4.8	Metallic Glasses
5	Con	clusions and Outlook
6	Ref	erences