Contents

Preface xi

Part I Introduction and Concepts 1

1	Anatomy of a Redox-Active Ligand 3
	Marine Desage-El Murr
1.1	Introduction 3
1.2	Biological Inspiration: From the Enzyme to the Flask, a Continued
	Journey 4
1.2.1	Radicals in Biological Systems 4
1.2.2	Redox Cofactors: Electrons and Protons in Metalloenzymatic
	Systems 4
1.3	Chemical History: Puzzle-Solving for Coordination Chemists 6
1.3.1	The Curious Case of Metal Complexes with Dithiolene Ligands 6
1.3.2	What are the Basic/Minimal Features? 7
1.3.3	Classification According to Modes of Action 8
1.4	Combining Spectroscopy and Theory: How to Spot a Redox-Active
	Ligand? 9
1.5	Non-innocent, Cooperative, Electro-Active, or Redox-Active? 10
1.5.1	Defining Terms 10
1.5.2	Related Notions 11
1.6	Unusual Ligands and Unusual Reactivities with a Redox-Active
	Ligand 12
1.6.1	Reactivity at Ligand 12
1.6.2	Open-Shell Reactivity: Radical Formation 13
1.6.3	Two-Electron Chemistry: C—C Bond Formation 14
1.7	Perspectives and Concluding Remarks 15
	References 15

2	Mechanistic Studies of Catalytic Nitrene-Transfer Reactions
	Involving Redox-Active Ligands and Substrates 21
	Nicolaas P. van Leest, Jarl Ivar van der Vlugt, and Bas de Bruin
2.1	Introduction 21
2.2	Characterization of Radical-type Intermediates 23
2.2.1	Single-crystal X-ray Diffraction 23
2.2.2	X-ray Absorption Spectroscopy 23
2.2.3	Electron Paramagnetic Resonance 25
2.2.4	Nuclear Magnetic Resonance Spectroscopy 27
2.2.5	Effective Magnetic Moment and Spin State 27
2.2.6	UV-vis and IR Absorption Spectroscopy and (Spectro-)
	Electrochemistry 28
2.2.7	Computational Studies 28
2.2.8	Concluding Remarks 28
2.3	Mechanistic Studies 29
2.3.1	Kinetic Analysis 29
2.3.2	Kinetic Isotope Effect 30
2.3.3	Hammett Analysis 31
2.3.4	Trapping and Poisoning 31
2.3.5	Computational Methods 32
2.3.6	Concluding Remarks 32
2.4	Case Studies for Nitrene Transfer Aided by Redox-Active Ligands and
	Substrates 33
2.4.1	Electronic Structures of Nitrene Complexes 33
2.4.2	Metal-to-Substrate Single-electron Transfer 34
2.4.3	Ligand-to-Substrate Single-electron Transfer 37
2.4.4	Spin-flip-assisted Reactions 39
2.4.5	Electron Transfer Coupled to Spin-flips 40
2.4.5.1	Nitrene Radical Formation and Transfer with a [Cu(NO ^{isq}) ₂]
	Complex 40
2.4.5.2	Nitrene Radical Formation and Transfer with Cobalt-TAML
	Complexes 41
2.4.6	Concluding Remarks and Outlook 46
	References 47
7	Raday Astina Licanda Franca Computational Researching 52
3	Redox-Active Ligands From a Computational Perspective 53
2.1	Roy Eckhardt, Dorys Reyes, Christian Sandoval-Pauker, and Balazs Pinter
3.1	Introduction 53
3.2	Electronic Structure Determination Through DFT and Spectroscopy 55
3.3	Redox-Active Ligands as Electron Reservoirs 63
3.3.1	Energy Conversion 64
3.3.1.1	Noble Metal Reactivity 64
3.3.1.2	Group Transfer and Radical Reactivity 69 Photography Cotchwig Solar to Chemical Energy Conversion 74
3.3.2	Photoredox Catalysis – Solar to Chemical Energy Conversion 74
3.3.3	Energy Storage: Redox-flow Batteries 80

3.4	In Silico Description and Engineering of Redox-Active Ligands 84
3.4.1	Computing Reduction Potentials 84
3.4.2	Rationalizing the Redox-Active Behavior of Quinoid and Bipyridine
	Ligands 86
3.4.3	Computational Techniques for Characterizing Ligand Redox
	Activity 88
3.4.4	Ligand Redox Activity in the Excited State – Photoredox Catalysis 92
3.5	Conclusions 98
	Acknowledgments 99
	References 100
	Part II Applications 107
4	Complexes of Stable N-aryl Radicals and Their Catalytic
	Applications 109
	Nicolas Leconte and Fabrice Thomas
4.1	Introduction and General Considerations on Exocyclic N-aryl
	Radicals 109
4.2	Complexes Featuring Anilinyl Radicals 111
4.2.1	Simple Anilines 111
4.2.2	TACN-Anilines 113
4.2.3	Tripods Anilines 114
4.2.4	Anilinosalens 114
4.2.5	Conjugated Anilines 115
4.2.6	Dipyrrin-Anilines 115
4.3	Bidentate o-diaminobenzenes and Their Radicals 115
4.3.1	Homoleptic Complexes 115
4.3.2	Heteroleptic Complexes 120
4.3.3	9,10-Phenanthrenediimine 123
4.4	Pincer Ligands and Their Radicals 124
4.5	Branched Tetradentate o-diaminobenzene and Associated Radicals 128
4.5.1	Pivotal/Tripodal N4 Ligands 128
4.5.2	"Planar" N4 Systems 128
4.5.3	Macrocyclic Ligands 130
4.6	Polydentate Ligands Featuring One Bidentate Diiminosemiquinone
4 6 1	Radical 130
4.6.1	Salphen 131
4.6.2	"Diamido" Platform 132
4.6.3	Diaminobenzene Platform 133
4.7	Representative Catalytic Applications 135
4.7.1	Alcohols Oxidation 135
4.7.2	Small Molecules Activation: O ₂ /H ₂ O ₂ - and H ₂ - Activation, H ₂
472	Production 137
4.7.3	Intra- and Intermolecular Nitrene Transfers: C–H Bond Amination, Aziridination 138
	/ MITHINGHUI 150

viii	Contents	
	4.7.4	Miscellaneous Transformations 139
	4.8	Conclusion 140
		References 141
	5	Redox-Active Ligands in Coordination Chemistry and Organic Synthesis 151 Toru Amaya, Toshiyuki Moriuchi, and Toshikazu Hirao
	5.1	Introduction 151
	5.2	Controlled Formation of Conjugated Complexes with Redox-Active
		Polyanilines or 1,4-Benzoquinonediimines 152
	5.3	Catalytic Application of Hybrid Systems Consisting of Redox-Active Polyanilines and Transition Metals 162
	5.4	Conclusion 169 Abbreviations 170 References 171
	6	Metal Complexes Bearing Redox-Active Supporting Ligands that Promote Chemical Transformations Involving Protons and Electrons 175 Kundan K. Singh and Isaac Garcia-Bosch
	6.1	Introduction 175
	6.2	Dioxygen Reduction to Water 177
	6.2.1	Cytochrome c Oxidase 177
	6.2.2	Synthetic Metal Complexes that Utilize Redox-Active Ligands to Reduce O ₂ to Water 178
	6.3	Dioxygen Reduction Coupled with Substrate Dehydrogenation 179
	6.3.1	Copper-Radical Oxidases 179
	6.3.2	Synthetic Metal Complexes that Utilize Redox-Active Ligands to Couple O ₂ Reduction with Substrate Dehydrogenation 180
	6.3.3	Synthetic Metal Complexes that Utilize Redox-Active Ligands to Couple Substrate Dehydrogenation with H ₂ Generation 184
	6.4	Dioxygen Reduction Coupled with Substrate Hydroxylation 187
	6.4.1	Cytochrome P450 187
	6.4.2	Synthetic Metal Complexes that Utilize Redox-Active Ligands to Couple
		O ₂ Reduction with Substrate Hydroxylation 188
	6.5	Conclusions and Future Perspectives 192 References 192

Part III Case Studies 197

7	Redox-Active Guanidine Ligands	199
	Hans-Jörg Himmel	

7.1 Introduction 199

7.2	Properties and Reactivity of Uncoordinated Redox-Active Guanidines 200
7.3	Redox-Active Guanidines as Ligands in Coordination Chemistry 206
7.3.1	Survey of Different Redox States of the Guanidine Ligand (Neutral, Dicationic, or Monocationic) in Coordination Compounds 206
7.3.2	Directed Stimulation of Intramolecular Electron Transfer (IET) in Copper Complexes with Redox-Active Guanidine Ligands 219
7.3.2.1	Valence Tautomerism (VT) 220
7.3.2.2	IET Triggered by Consecutive Reactions 227
7.3.2.3	Redox-Induced Electron Transfer (RIET) 229
7.3.2.4	IET Triggered by Counterligand Addition 230
7.3.2.5	IET Triggered by Counterligand Substitution 232
7.3.2.6	IET Triggered by Coordination of Metals to a Secondary Coordination Sphere 235
7.3.3	Catalytic Application in the Cross-Coupling of Phenols 238
7.4	Perspectives 241
	References 242
8	Coordination Chemistry with Lanthanides and Redox-Active
	Ligands 249
	Valeriu Cemortan and Grégory Nocton
8.1	Introduction 249
8.2	Quinone, Iminoquinone, and O-phenylenediamine-Based Complexes 250
8.3	Diazadienes 262
8.4	Iminopyridines and Bis(imino)pyridines 271
8.5	Nitroxides 277
8.6	N-heterocycles 280
8.7	Conclusion and Outlook 299
···	References 300
9	Actinide Complexes of Redox Non-innocent Ligands 317
	Karlotta van Rees and Jason B. Love
9.1	Bipyridyl Ligands 318
9.2	Pyrrole Ligands 320
9.3	Tmtaa Ligand 323
9.4	Schiff-Base Ligands 324
9.5	Pyridine(di-imine) Ligands 329
9.6	Phosphite Ligands 332
9.7	Quinone Ligands 332
9.8	Aryloxide Ligands 335
9.9	Conclusion 338
	References 339