

Contents

1. Elementary Properties of Semiconductors	1
1.1 Insulator – Semiconductor – Semimetal – Metal	1
1.2 The Positive Hole	3
1.3 Conduction Processes, Compensation, Law of Mass Action	4
Problems	8
2. Energy Band Structure	10
2.1 Single and Periodically Repeated Potential Well	10
2.2 Energy Bands by Tight Binding of Electrons to Atoms	17
2.3 The Brillouin Zone	21
2.4 Constant Energy Surfaces	30
Problems	33
3. Semiconductor Statistics	34
3.1 Fermi Statistics	35
3.2 Occupation Probabilities of Impurity Levels	39
Problems	45
4. Charge and Energy Transport in a Nondegenerate Electron Gas	46
4.1 Electrical Conductivity and Its Temperature Dependence	46
4.2 Hall Effect in a Transverse Magnetic Field	52
4.3 Hall Techniques	61
4.4 Magnetoresistance	63
4.5 Corbino Resistance	67
4.6 Transport in Inhomogeneous Samples	70
4.7 Planar Hall Effect	72
4.8 Thermal Conductivity, Lorenz Number, Comparison with Metals	74
4.9 Thermoelectric (Seebeck) Effect	79
4.10 Thomson and Peltier Effects	86
4.11 Thermomagnetic Effects	91
4.12 Piezoresistance	97
4.13 Hot Electrons and Energy Relaxation Time	102

4.14 High-Frequency Conductivity	107
4.15 Noise	109
Problems	110
5. Carrier Diffusion Processes	113
5.1 Injection and Recombination	113
5.2 Diffusion and the Einstein Relation	115
5.3 The p-n Junction	121
5.4 Quasi-Fermi Levels	130
5.5 The Bipolar Transistor	132
5.6 The Metal-Semiconductor Contact	137
5.7 Various Types of Transistors Including MOSFET	139
5.8 Dember Effect and PEM Effect	145
5.9 Photovoltaic Effect	148
Problems	152
6. Scattering Processes in a Spherical One-Valley Model	153
6.1 Neutral Impurity Scattering	153
6.2 Elastic Scattering Processes	156
6.3 Ionized Impurity Scattering	160
6.4 Acoustic Deformation Potential Scattering of Thermal Carriers	165
6.5 Acoustic Deformation Potential Scattering of Hot Carriers	168
6.6 Combined Ionized Impurity and Acoustic Deformation Potential Scattering	174
6.7 Piezoelectric Scattering	178
6.8 The Phonon Spectrum of a Crystal	181
6.9 Inelastic Scattering Processes	185
6.10 The Momentum Balance Equation and the Shifted Maxwellian	190
6.11 Optical Deformation Potential Scattering	193
6.12 Polar Optical Scattering	198
6.13 Carrier-Carrier Scattering	206
6.14 Impurity Conduction and Hopping Processes	207
6.15 Dislocation Scattering	209
Problems	212
7. Charge Transport and Scattering Processes in the Many-Valley Model	214
7.1 The Deformation Potential Tensor	214
7.2 Electrical Conductivity	217
7.3 Hall Effect in a Weak Magnetic Field	221
7.4 The Weak-Field Magnetoresistance	223
7.5 Equivalent Intervalley Scattering and Valley Repopulation Effects	228

7.6 Nonequivalent Intervalley Scattering, Negative Differential Conductivity and Gunn Oscillations	232
7.7 The Acousto-Electric Effect	246
Problems	254
8. Carrier Transport in the Warped-Sphere Model	256
8.1 Energy Bands and Density of States	256
8.2 The Electrical Conductivity	261
8.3 Hall Effect and Magnetoresistance	261
8.4 Warm and Hot Holes	268
Problems	269
9. Quantum Effects in Transport Phenomena	270
9.1 The Tunnel Diode and the Esaki Superlattice	270
9.2 Magnetic Quantum Effects	277
9.3 Magnetic Freeze-out of Carriers	282
9.4 The Magnetophonon Effect	285
Problems	290
10. Impact Ionization and Avalanche Breakdown	291
10.1 Low-Temperature Impact Ionization in Homogeneous Semiconductors	291
10.2 Avalanche Breakdown in p-n Junctions	296
Problems	301
11. Optical Absorption and Reflection	302
11.1 Fundamental Absorption and Band Structure	302
11.2 Absorption Edge: Dependence on Temperature, Pressure, Alloy Composition, and Degeneracy	305
11.3 Exciton Absorption and Electron Hole Droplets	313
11.4 Interband Transitions in a Magnetic Field	317
11.5 The Franz-Keldysh Effect (Electroabsorption and Electroreflectance)	319
11.6 Impurity Absorption	324
11.7 Lattice Reflection in Polar Semiconductors	332
11.8 Multiphonon Lattice Absorption	335
11.9 Quantum Mechanical Treatment of the Fundamental Optical Absorption Edge	337
11.10 Free-Carrier Absorption and Reflection	343
11.11 Cyclotron Resonance	356
11.12 Free-Carrier Magneto-Optical Effects	363
11.13 Interband Magneto-Optical Effects	373

11.14 Magnetoplasma Waves	375
11.15 Nonlinear Optics	378
Problems	383
12. Photoconductivity	386
12.1 Photoconduction Dynamics	386
12.2 Deep Levels in Germanium	392
12.3 Trapping Cross Section of an Acceptor	400
Problems	401
13. Light Generation by Semiconductors	402
13.1 The Luminescent Diode	402
13.2 The Semiconductor Laser	406
13.3 The NIPI Superlattice	416
Problems	424
14. Properties of the Surface	425
14.1 Surface States	425
14.2 Surface Transport and Photoemission	428
14.3 Surface Quantization and the Quantum Hall Effect	430
Problems	435
15. Miscellaneous Semiconductors	436
15.1 Amorphous Semiconductors	436
15.2 Effects of Deep-Level Impurities on Transport	440
15.3 Organic Semiconductors	443
Problems	444
Appendices	445
A. Physical Constants	445
B. Computer Program for the Calculation of the Band Structure of Diamond	446
References	449
Subject Index	475