

Contents

Part I Background Information

1. Introduction	1
1.1 Thin Film Growth from Beams in a High Vacuum Environment	2
1.1.1 Vacuum Conditions for MBE	3
1.1.2 Basic Physical Processes in the MBE Vacuum Chamber	6
1.2 Evolution of the MBE Technique	13
1.2.1 The Early Stages of MBE	13
1.2.2 MBE in the 1980s	16
1.3 Modifications of the MBE Technique	16
1.3.1 Gas Source MBE	17
1.3.2 Phase-Locked Epitaxy	19
1.3.3 Atomic Layer Epitaxy	23
1.3.4 FIBI-MBE Processing Technology	25
1.3.5 A Classification Scheme for the MBE Techniques	27

Part II Technological Equipment

2. Sources of Atomic and Molecular Beams	29
2.1 The Effusion Process and the Ideal Effusion Cell	30
2.1.1 Langmuir and Knudsen Modes of Evaporation	31
2.1.2 The Cosine Law of Effusion	32
2.2 Effusion from Real Effusion Cells	35
2.2.1 The Near-Ideal Cylindrical Effusion Cell	35
2.2.2 The Cylindrical Channel Effusion Cell	43
2.2.3 Hot-Wall Beam Cylindrical Source	44
2.2.4 The Conical Effusion Cell	48
2.3 Effusion Cells Used in CPS MBE Systems	53
2.3.1 Conventional Effusion Cells	53
2.3.2 Dissociation (Cracker) Effusion Cells	58
2.3.3 Electron Beam and Laser Radiation Heated Sources	62
2.4 Beam Sources Used in GS MBE Systems	69
2.4.1 Arsine and Phosphine Gas Source Crackers	69
2.4.2 Gas Sources Used in MO MBE	71

3. High Vacuum Growth and Processing Systems	73
3.1 Building Blocks of Modular MBE Systems	74
3.1.1 The Cassette Entry Stage	76
3.1.2 The Interstage Substrate Transfer System	78
3.1.3 The Preparation and Analysis Stages	81
3.1.4 The MBE Deposition Chamber	85
3.1.5 Beam Sources	89
3.1.6 Monitoring and Analytical Facilities	99
3.2 Multiple-Growth and Multiple-Process Facilities	
in MBE Systems	107
3.2.1 The Hot-Wall Beam Epitaxy Growth System	108
3.2.2 Focused Ion Beam Technology	113

Part III Characterization Methods

4. In-Growth Characterization Techniques	120
4.1 RHEED	121
4.1.1 Fundamentals of Electron Diffraction	122
4.1.2 Origin of RHEED Features	129
4.1.3 RHEED Data from Reconstructed Semiconductor	
Surfaces	134
4.1.4 RHEED Rocking Curves	138
4.1.5 RHEED Intensity Oscillations	141
4.2 Ellipsometry	147
4.2.1 Fundamentals of Ellipsometry	148
4.2.2 Ellipsometric Systems Used for In-Growth	
Analysis in MBE	153
5. Postgrowth Characterization Methods	159
5.1 Survey of Postgrowth Characterization Methods	161
5.2 Auger Electron Spectroscopy	162
5.2.1 Chemical Composition of Solid Surfaces	167
5.2.2 Sputter Depth Profiling	172
5.3 X-Ray Diffraction	175
5.3.1 Diffraction Under Nonideal Conditions	176
5.3.2 High Resolution X-Ray Diffraction	180
5.3.3 X-Ray Diffraction at Multilayers and Superlattices	182
5.4 Photoluminescence	184
5.4.1 Photoluminescence in Binary Compounds	185
5.4.2 Photoluminescence in Ternary and Quaternary	
Compounds	189
5.4.3 Photoluminescence of Quantum Well Structures	
and Superlattices	191

5.5 Electrical Characterization	195
5.5.1 Determination of Carrier Concentration and Mobility	195
5.5.2 Deep Level Transient Spectroscopy	200
5.6 Sophisticated Characterization Methods	205
5.6.1 Transmission Electron Microscopy	206
5.6.2 Rutherford Backscattering and Channeling	209

Part IV MBE Growth Processes

6. Fundamentals of the MBE Growth Process	215
6.1 General View of the MBE Growth Process	215
6.1.1 Equilibrium States in MBE	215
6.1.2 The Transition Layer Concept	217
6.2 Relations Between Substrate and Epilayer	218
6.2.1 Critical Thickness for the Formation of Misfit Dislocations	219
6.2.2 Role of the Crystallographic Orientation of the Substrate	225
6.2.3 Role of the Substrate Surface Reconstruction	230
6.3 The Near-Surface Transition Layer	235
6.3.1 Physical and Chemical Adsorption	235
6.3.2 Spatial Arrangement of the Near-Surface Transition Layer	241
6.4 Growth Interruption and Pulsed Beam Deposition	243
6.4.1 Recovery Effect During Growth Interruption	243
6.4.2 Growth of Superlattice Structures by Phase-Locked Epitaxy	245
6.4.3 UHV Atomic Layer Epitaxy	247
6.4.4 Migration Enhanced Epitaxy	250
6.4.5 Molecular Layer Epitaxy	254
6.5 Doping During MBE Processes	258
6.5.1 Unintentional Doping	258
6.5.2 Thermodynamics of Doping by Co-deposition	260
6.5.3 Delta-Function-Like Doping Profiles	265
6.5.4 In-Growth Doping with Ionized Beams	267
7. Material-Related Growth Characteristics in MBE	278
7.1 Si and IV–IV Heterostructures	278
7.1.1 Si Substrate Preparation Procedures	279
7.1.2 Homoepitaxy of Si Films	281
7.1.3 Heteroepitaxy of Ge and Sn on Si Substrates	286
7.1.4 Ge_xSi_{1-x}/Si Heterostructures and Superlattices	291
7.1.5 Devices Grown by Si MBE	295
7.2 GaAs- and As-Containing Compounds	301
7.2.1 Preparation of the GaAs(100) Substrate Surface	302
7.2.2 Growth of GaAs on GaAs(100) Substrates	305

7.2.3 Growth of $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ Heterostructures	314
7.2.4 Growth of GaAs on Si Substrates	321
7.2.5 Device Structures Grown by GaAs MBE	327
7.3 Narrow-Gap II-VI Compounds Containing Hg	332
7.3.1 Substrates for MBE of Hg Compounds	333
7.3.2 Hg-Compound Heterostructures Grown by MBE	337
7.3.3 Device Structures	338
<hr/>	
Part V Conclusion	
<hr/>	
8. Outlook	341
8.1 Miscellaneous Material Systems Grown by MBE	341
8.2 MBE-Related Growth Techniques	346
8.3 Development Trends of the MBE Technique	349
References	351
Subject Index	379