## Contents

## Part I (by Bernd Gärtner)

| 1 | Inti                              | roduction: MAXCUT Via Semidefinite Programming      | 3  |
|---|-----------------------------------|-----------------------------------------------------|----|
|   | 1.1                               | The MAXCUT Problem                                  | 3  |
|   | 1.2                               | Approximation Algorithms                            | 4  |
|   | 1.3                               | A Randomized 0.5-Approximation Algorithm for MAXCUT | 6  |
|   | 1.4                               | The Goemans–Williamson Algorithm                    | 7  |
| 2 | Semidefinite Programming          |                                                     |    |
|   | 2.1                               | From Linear to Semidefinite Programming             | 15 |
|   | 2.2                               | Positive Semidefinite Matrices                      | 16 |
|   | 2.3                               | Cholesky Factorization                              | 17 |
|   | 2.4                               | Semidefinite Programs                               | 18 |
|   | 2.5                               | Non-standard Form                                   | 20 |
|   | 2.6                               | The Complexity of Solving Semidefinite Programs     | 20 |
| 3 | Shannon Capacity and Lovász Theta |                                                     |    |
|   | 3.1                               | The Similarity-Free Dictionary Problem              | 27 |
|   | 3.2                               | The Shannon Capacity                                | 29 |
|   | 3.3                               | The Theta Function                                  | 31 |
|   | 3.4                               | The Lovász Bound                                    | 32 |
|   | 3.5                               | The 5-Cycle                                         | 35 |
|   | 3.6                               | Two Semidefinite Programs for the Theta Function    | 36 |
|   | 3.7                               | The Sandwich Theorem and Perfect Graphs             | 39 |
| 4 | Duality and Cone Programming      |                                                     | 45 |
|   | 4.1                               | Introduction                                        | 45 |
|   | 4.2                               | Closed Convex Cones                                 | 47 |
|   | 4.3                               | Dual Cones                                          | 49 |
|   | 4.4                               | A Separation Theorem for Closed Convex Cones        | 51 |
|   | 4.5                               | The Farkas Lemma, Cone Version                      | 52 |

 $\mathbf{i}\mathbf{x}$ 



|          | 4.6<br>4.7     | Cone Programs<br>Duality of Cone Programming             | $\frac{57}{62}$ |
|----------|----------------|----------------------------------------------------------|-----------------|
|          | 4.8            | The Largest Eigenvalue                                   | 68              |
| <b>5</b> | App            | proximately Solving Semidefinite Programs                | 75              |
|          | 5.1            | Optimizing Over the Spectahedron                         | 76              |
|          | 5.2            | The Case of Bounded Trace                                | 78              |
|          | 5.3            | The Semidefinite Feasibility Problem                     | 80              |
|          | 5.4            | Convex Optimization Over the Spectahedron                | 82              |
|          | 5.5            | The Frank–Wolfe Algorithm                                | 84              |
|          | 5.6            | Back to the Semidefinite Feasibility Problem             | 89              |
|          | 5.7            | From the Linearized Problem to the Largest Eigenvalue    | 90              |
|          | 5.8            | The Power Method                                         | 92              |
| 6        | An             | Interior-Point Algorithm for Semidefinite Programming    |                 |
|          | 6.1            | The Idea of the Central Path 1                           |                 |
|          | 6.2            | Uniqueness of Solution 1                                 |                 |
|          | 6.3            | Necessary Conditions for Optimality 1                    |                 |
|          | 6.4            | Sufficient Conditions for Optimality 1                   |                 |
|          | 6.5            | Following the Central Path 1                             | 109             |
| 7        | Cor            | positive Programming 1                                   | 119             |
|          | 7.1            | The Copositive Cone and Its Dual 1                       |                 |
|          | 7.2            | A Copositive Program for the Independence Number         |                 |
|          |                | of a Graph 1                                             |                 |
|          | 7.3            | Local Minimality Is coNP-hard 1                          | 127             |
| Pa       | rt II          | (by Jiřf Matoušek)                                       |                 |
| 8        | Low            | ver Bounds for the Goemans–Williamson MAXCUT             |                 |
|          | $\mathbf{Alg}$ | orithm                                                   | 133             |
|          | 8.1            | Can One Get a Better Approximation Ratio? 1              | 133             |
|          | 8.2            | Approximation Ratio and Integrality Gap 1                | 135             |
|          | 8.3            | The Integrality Gap Matches the Goemans–Williamson Ratio | 136             |
|          | 8.4            | The Approximation Ratio Is At Most $\alpha_{\rm GW}$     |                 |
|          | 8.5            | The Unique Games Conjecture for Us Laymen, Part I 1      | 152             |
| 9        | Col            | oring 3-Chromatic Graphs 1                               | 157             |
|          | 9.1            | The 3-Coloring Challenge 1                               |                 |
|          | 0.2            | From a Vactor Coloring to a Proper Coloring              |                 |

| 9.2 | From a Vector Coloring to a Proper Coloring | 158 |
|-----|---------------------------------------------|-----|
| 9.3 | Properties of the Normal Distribution       | 159 |
| 9.4 | The KMS Rounding Algorithm                  | 161 |
| 9.5 | Difficult Graphs                            | 163 |
|     |                                             |     |

| 10  | Maximizing a Quadratic Form on a Graph 1                     | .67 |
|-----|--------------------------------------------------------------|-----|
|     | 10.1 Four Problems 1                                         |     |
|     | 10.2 Quadratic Forms on Graphs 1                             | 69  |
|     | 10.3 The Rounding Algorithm 1                                | 72  |
|     | 10.4 Estimating the Error 1                                  | 73  |
|     | 10.5 The Relation to $\vartheta(\overline{G})$ 1             | 76  |
| 11  | Colorings with Low Discrepancy 1                             | .79 |
|     | 11.1 Discrepancy of Set Systems 1                            |     |
|     | 11.2 Vector Discrepancy and Bansal's Random Walk Algorithm 1 |     |
|     | 11.3 Coordinate Walks 1                                      |     |
|     | 11.4 Set Walks 1                                             | 87  |
| 12  | Constraint Satisfaction Problems, and Relaxing Them          |     |
|     | Semidefinitely                                               | 93  |
|     | 12.1 Introduction                                            | 93  |
|     | 12.2 Constraint Satisfaction Problems 1                      | 94  |
|     | 12.3 Semidefinite Relaxations of 2-CSP's 1                   | 98  |
|     | 12.4 Beyond Binary Boolean: MAX-3-SAT & Co 2                 | 205 |
| 13  | Rounding Via Miniatures                                      | 211 |
|     | 13.1 An Ultimate Rounding Method? 2                          | 211 |
|     | 13.2 Miniatures for MAXCUT 2                                 | 212 |
|     | 13.3 Rounding the Canonical Relaxation of MAX-3-SAT          |     |
|     | and Other Boolean CSP 2                                      | 219 |
| Sur | mmary 2                                                      | 29  |
| Re  | ferences                                                     | 39  |
| Ind | lex                                                          | 45  |