Contents

1.	Prog	ress in	Inverse Optical Problems. By H.P. Baltes	1
	1.1	Invers	e Problems in Optics and Elsewhere	1
	1.2	Survey	of Recent Results	3
		1.2.1	Phase, Uniqueness, and Estimation	3
		1.2.2	Radiometry and Coherence	4
		1.2.3	A Moment Problem	5
	1.3	Constr	uction of Lambertian Scatterers	6
		1.3.1	Lambertian Source Correlation	6
		1.3.2	Random Scatterer Models	6
	1.4	Organi	zation of this Volume	8
	Refe	rences		10
2.	The	Inverse	Scattering Problem in Structural Determinations	
	By G	. Ross,	M.A. Fiddy, and M. Nieto-Vesperinas (With 9 Figures)	15
	2.1	Philos	ophical Background	15
	2.2	The Di	rect Scattering Problem	21
		2.2.1	Description of the Medium	21
		2.2.2	The Scattered Fields	23
		2.2.3	Expression for the Intensity	27
	2.3 Analytic Description and Properties of Scattered Fields			
		2.3.1	Entire Functions of the Exponential Type	29
		2.3.2	Distributions of Zeros for Functions of Class E	33
		2.3.3	Encoding of Information by Zeros	35
	2.4	The De	terministic Problem	41
		2.4.1	Limitations of Measurements	41
		2.4.2	The Phase Problem	42
		2.4.3	Solutions to the Zero Problem	44
		2.4.4	Zero Location	46
		2.4.5	Extensions of the Method	51
	2.5	The St	atistical Problem	52
		2.5.1	Overall Characterization of the Medium	52
		2.5.2	Analytical Properties of Overall Descriptors	59
		2.5.3	Determination of Overall Descriptors from Finite Records	61

	2.6	Conclu	sions	68			
	Refe	rences		70			
3.	Photon-Counting Statistics of Optical Scintillation						
	Ву Е	. Jakem	an and P.N. Pusey (With 9 Figures)	73			
	3.1	3.1 Introductory Remarks					
	3.2	Photon	-Counting Statistics	77			
		3.2.1	Single-Interval Statistics	77			
		3.2.2	Photon-Correlation Spectroscopy	81			
		3.2.3	Instrumental Effects	84			
		3.2.4	Noise and Statistical Accuracy	87			
	3.3	Scatte	ring Theory	89			
		3.3.1	Mechanisms and Theories for Strong Scattering	90			
		3.3.2	The "Discrete-Scatterer" Model	92			
		3.3.3	K Distributions	95			
		3.3.4	Correlation Functions	96			
	3.4	Limit	Distributions in the Random Walk Problem	98			
		3.4.1	The Gaussian Limit	98			
		3.4.2	Negative Binomial Number Fluctuations	99			
		3.4.3	A Population Model	101			
	3.5	Experi	ments	104			
		3.5.1	Dynamic Scattering by Nematic Liquid Crystals	104			
		3.5.2	Hot-Air Phase Screen	108			
		3.5.3	Extended Atmospheric Turbulence	111			
		3.5.4	Other Experiments	113			
	3.6	Conclu	ding Remarks	113			
	Refe	rences		114			
4.	Micr	oscopic	Models of Photodetection. By A. Selloni (With 3 Figures)	117			
	4.1	Photoe	lectron and Photon Statistics	117			
		4.1.1	Definition of the Problem	118			
		4.1.2	Ideal and Real Detection	118			
	4.2	Models	for Ideal Detection — a Review	120			
		4.2.1	Mandel's Formula	120			
		4.2.2	Perturbation Approach	121			
		4.2.3	Field Attenuation	124			
		4.2.4	Inversion Problem	126			
	4.3	Open-S	ystem Detection Scheme	128			
		4.3.1	Detector Model	128			
		4.3.2	Relation Between Atomic and Field Dynamics	130			
			Field Dynamics	130			
			Dynamics of the Atomic Moments	131			

		4.3.3	Photocounting Probability	132
	4.4	Distur	bing Effects	133
		4.4.1	Dark Currents and Noise	133
			Photodetectors	133
			Noise in Photoconductive Detectors	134
			Noise in Photomultipliers	135
			PMT Statistics	135
		4.4.2	Dead Time Effects	136
		4.4.3	Coherence and Sampling Effects	138
			Time Effects	138
			Spatial Effects	139
			Sampling Effects	140
			Other Counting Experiments	141
	4.5	Temper	ature Effects in Photodetection	141
		4.5.1	Langevin Equations of Motion	142
			The Field Equation	143
			Connection Between Atomic and Field Dynamics	144
		4.5.2	Photocounting Probability	144
		4.5.3	Applications	146
			Numerical Examples and Discussion	147
	4.6	Summar	y of Statistical Methods	148
		4.6.1	Random Variables	148
			Examples	149
		4.6.2	Stochastic Processes	151
		4.6.3	The Statistical Description of the Radiation Field	153
	4.7	The St	atistical Description of Open Systems	154
		4.7.1	Equation of Motion of the Reduced Density Matrix	154
		4.7.2	Langevin Equations	156
	Refe	rences		158
5.	The	Stabili	ty of Inverse Problems. By M. Bertero, C. de Mol,	
	and	G.A. Vi	ano (With 7 Figures)	161
	5.1	I11-Po	sedness in Inverse Problems	161
		5.1.1	Well-Posed and Ill-Posed Problems	162
		5.1.2	Ill-Posedness and Numerical Instability	163
		5.1.3	General Formulation of Linear Inverse Problems	165
		5.1.4	Prior Knowledge as a Remedy to Ill-Posedness	168
		5.1.5	Hölder and Logarithmic Continuity	170
	5.2	Regula	rization Theory	171
		5.2.1	An Outline of Miller's Theory	171
		5.2.2	Eigenfunction Expansions and Numerical Filtering	174

		5.2.3	Tikhonov Regularization Method	177
		5.2.4	Stability Estimates	178
	5.3	Optimu	m Filtering	182
		5.3.1	Random Variables in a Hilbert Space	182
		5.3.2	Best Linear Estimates	184
		5.3.3	Mean-Square Errors	188
		5.3.4	Comparison with Miller's Regularization Method	189
	5.4	Linear	Inverse Problems in Optics	190
		5.4.1	Inverse Problems in Fourier Optics	191
			Prolate Spheroidal Wave Functions (PSWF)	191
			Perfect Lowpass Filter	192
			Bandwidth Extrapolation	195
		5.4.2	Inverse Diffraction	197
			Inverse Diffraction from Plane to Plane	197
			Inverse Diffraction for Cylindrical Waves	198
			Inverse Diffraction from Far-Field Data	199
		5.4.3	An Inverse Scattering Problem for Perfectly Conducting	
			Bodies	200
		5.4.4	Inverse Scattering Problems in the Born Approximation	203
		5.4.5	Object Reconstruction from Projections and Abel Equation	207
		5.4.6	Concluding Remarks and Open Problems	209
	Refe	rences		211
6.			Diagnostics by Multiangular Absorption	
			rd and P.J. Emmerman (With 10 Figures)	215
	6.1		tion in Homogeneous Media	216
	6.2		ngular Scanning	217
		6.2.1	Basic Equation	218
		6.2.2	Two-Dimensional Fourier Transform	219
		6.2.3	Linear Superposition Techniques	221
		6.2.4	Algebraic Reconstruction Techniques (ART)	221
		6.2.5	Applications and Results	221
	6.3		construction Procedure	222
		6.3.1	Reconstruction Errors	222
		6.3.2	An Observation of the Oversampling Requirement	
			of Reconstruction	224
		6.3.3	Number of Measurements $M \times N$ in Combustion Application	224
		6.3.4	The Convolution Algorithm	225
		6.3.5	Simulated Test Functions and Results	227
		6.3.6	Algebraic Reconstruction	231
		6.3.7	Benefits of Additional Digital Signal Processing	231
		6.3.8	Conclusion	232

	6.4	Evneri	mental Aspects	232	
		•		234	
	Rele	rences		20,	
7.	Pola	rizatio	n Utilization in Electromagnetic Inverse Scattering		
			erner (With 11 Figures)	237	
	7.1		***************************************	237	
		7.1.1	Definitions of the Electromagnetic Inverse Problem	238	
		7.1.2	Definitions of Exact, Unique, and Approximate Methods	239	
		7.1.3	Incompleteness and A Priori Knowledge, Data Limitedness		
			and Self-Consistency	239	
	7.2	The Ve	ctor Diffraction Integral, Its Far-Field Approximations,		
		and So	me Tauberian Relations	241	
		7.2.1	Basic Scattering Phenomena, Nomenclature, and		
			Radar Definitions	241	
		7.2.2	The Stratton-Chu Vector Diffraction Integral and		
			the Vector-Current Integral Equations	244	
		7.2.3	Far Scattered Fields in the Physical Optics Limit and		
			Their Vector Corrections	246	
		7.2.4	Time-Domain Target Modeling: Utilization of Some		
			Tauberian Theorems	247	
	7.3	The Ra	dar Scattering and Target Polarization Matrices	250	
		7.3.1	Basic Electromagnetic Polarization Descriptors	250	
		7.3.2	Radar Scattering Matrices and Radar Measurables	254	
		7.3.3	Kennaugh's Optimum Polarization Pairs	257	
		7.3.4	Radar Target and Clutter Characteristic Operators	260	
			Single Radar Target Classification	260	
			The Time-Varying Distributed Target		
			Synthetic Aperture Imagery	264	
	7.4		se Scattering Theories in Various Electromagnetic	241 244 246 247 250 254 257 260 261 264 267 267 269 271	
		Freque	ency Regimes	266	
		7.4.1	The Low Frequency Regime: Rayleigh-Gans Theory	267	
		7.4.2	The Resonant Frequency Regime: Natural Frequency Expansion	267	
		7.4.3	Physical Optics Far-Field Inverse Scattering Theories:		
			Broad-Band Approach	269	
			Fourier Transform Method of Physical Optics	269	
			POFFIS in Time, Frequency, and Projection Domain		
			The Limited Aperture Problem	273	
			Polarizational Correction	274	
		7.4.4	Geometrical Optics Inverse Scattering Asymptotic Theories	275	
			GOIS and the Minkowski Problem	276	
			Vector Extension of GO Equivalent Curvature Inverse Method	278	

		Scattering Center Discrimination: Kell's Monostatic-	
		Bistatic Equivalence Theorem	278
7.5	Vector	Holography and Polarization Utilization	279
	7.5.1	Vector Wavefront Reconstruction and Interferometry	280
	7.5.2	Polarization Dependence in Millimeter and	
		Microwave Holography	282
	7.5.3	The Postulate of Inverse Boundary Conditions	283
	7.5.4	Near-Field Approach to Vector Inverse Scattering	286
7.6	Conclu	sions	287
	7.6.1	Summary	287
	7.6.2	Unresolved Vector Inverse Problems	288
	7.6.3	Limitations and Omissions	289
	7.6.4	Recommendations	289
Refe	erences		290
4 4 4 4 4 4 4	1 D . C .		200
		rences with Titles	
Subject	Indor		305