Contents

Preface IX

1	Discovery, Invention, and Science in Human Progress 1				
1.1	Origins of Technology, the Need for Human Survival 1				
1.2	The Industrial Revolution: Watt's Steam Engine, Thermodynamics Energy Sources 2				
1.3	A Short History of Time: Navigation, Longitudes, Clocks 4				
1.4	The Information Revolution: Abacus to Computer Chips and Fiber Optics 5				
1.5	Overlap and Accelerating Cascade of Technologies: GPS, Nuclear Submarines 6				
1.6	Silicon and Biotechnologies: Carbon Dating, Artificial Intelligence 7				
1.7	Nanotechnology: A Leading Edge of Technological Advance, a Bridge to the Future 13				
1.8	How to Use This Book 15				
	References 16				
2	Smaller Is More, Usually Better, and Sometimes Entirely New! 17				
2.1	Nanometers, Micrometers, Millimeters-Visualizing a				
	Nanometer 18				
2.2	Moore's Law: from 30 Transistors to a Billion Transistors on One				
	Chip and Cloud Computing 19				
2.3	Miniaturization: Esaki's Tunneling Diode, 1-TB Magnetic Disk "Read" Heads 22				
2.4	Accelerometers and Semiconductor Lasers 24				
2.5	Nanophysics-Based Technology: Medical Imaging, Atomic Clock, Sensors, Quantum Computers, 26				

References 27

6.1

6.2

6.3

6.4

6.5

6.66.7

6.8

Conte	nts		
3	Systematics of Scaling Things Down: $L = 1 \text{ m} \rightarrow 1 \text{ nm}$ 29		
3.1	One-Dimensional and Three-Dimensional Scaling 29		
3.2	Examples of Scaling: Clocks, Tuning Forks, Quartz Watche Carbon Nanotubes 31		
3.3	Scaling Relations Illustrated by Simple Circuit Elements 37		
3.4	Viscous Forces for Small Particles in Fluid Media 38		
3.5	What about Scaling Airplanes and Birds to Small Sizes? 39 References 40		
4	Biology as Successful Nanotechnology 41		
4.1	Molecular Motors in Large Animals: Linear Motors and Rotary Motors 41		
4.2	Information Technology in Biology Based on DNA 46		
4.3	Sensors, Rods, Cones, and Nanoscale Magnets 52		
4.4	Ion Channels: Nanotransistors of Biology 53		
	References 53		
5	The End of Scaling: The Lumpiness of All Matter in the		
T 1	Universe 55		
5.1	Lumpiness of Macroscopic Matter below the 10-µm Scale 55		
5.2	Hydrogen Atom of Bohr: A New Size Scale, Planck's Constant 57		
5.3	Waves of Water, Light, Electron, and Their Diffractions 60		
5. 4	DeBroglie Matter Wavelength 62		
5.5	Schrodinger's Equation 63		
5.6	The End of Scaling, the Substructure of the Universe 63		
5.7	What Technologies Are Directly Based on These Fundamental		
	Particles and Spin? 64		
	Reference 65		
6	Ouantum Consequences for the Macroworld 67		

Quantum Wells and Standing Waves

The "Strong Force" Binds Nuclei

The Spherical Atom 73

Them)? 75

References 79

Double Well as Precursor of Molecule 71

Probability Distributions and Uncertainty Principle

Chemical Elements: Based on Nuclear Stability 76

Where Did the Nuclei Come From (Atoms Quickly Form around

Molecules and Crystals: Metals as Boxes of Free Electrons 77

69

7	Some Natural and Industrial Self-Assembled Nanostructures 81
7.1	Periodic Structures: A Simple Model for Electron Bands and
	Gaps 81
7.2	Engineering Electrical Conduction in Tetrahedrally Bonded
	Semiconductors 83
7.3	Quantum Dots 85
7.4	Carbon Nanotubes 86
7.5	C ₆₀ Buckyball 91
	References 92
8	Injection Lasers and Billion-Transistor Chips 93
8.1	Semiconductor P-N Junction Lasers in the Internet 93
8.2	P-N Junction and Emission of Light at 1.24 µm 98
8.3	Field Effect Transistor 101
9	The Scanning Tunneling Microscope and Scanning Tunneling
	Microscope Revolution 105
9.1	Scanning Tunneling Microscope (STM) as Prototype 105
9.2	Atomic Force Microscope (AFM) and Magnetic Force Microscope
	(MFM) 110
9.3	SNOM: Scanning Near-Field Optical Microscope 115
10	Magnetic Resonance Imaging (MRI): Nanophysics of Spin ½ 117
10.1	Imaging the Protons in Water: Proton Spin ½, a Two-Level System 117
10.2	Magnetic Moments in a Milligram of Water: Polarization and
	Detection 118
10.3	Larmor Precession, Level Splitting at 1T 119
10.4	Magnetic Resonance and Rabi Frequency 120
10.5	Schrodinger's Cat Realized in Proton Spins 121
10.6	Superconductivity as a Detection Scheme for Magnetic Resonance
	Imaging 122
10.7	Quantized Magnetic Flux in Closed Superconducting Loops 123
10.8	SQUID Detector of Magnetic Field Strength 124
	A SQUID-Based MRI Has Been Demonstrated 125
11	Nanophysics and Nanotechnology of High-Density Data
	Storage 127

Approaches to Terabyte Memory: Mechanical and Magnetic

The Nanoelectromechanical "Millipede" Cantilever Array and Its

11.1

11.2

Fabrication 127

Notes 177 Index 199

VIII	Conten	Contents		
	11.3	The Magnetic Hard Disk 132 Reference 137		
	12 12.1	Single-Electron Transistors and Molecular Electronics 139 What Could Possibly Replace the FET at the "End of Moore's Law"? 139		
	12.2	The Single-Electron Transistor (SET) 139		
	12.3	Single-Electron Transistor at Room Temperature Based on a Carbon Nanotube 142		
	12.4	Random Access Storage Based on Crossbar Arrays of Carbon Nanotubes 143		
	12.5	A Molecular Computer! 147 References 149		
	13	Quantum Computers and Superconducting Computers 151		
	13.1	The Increasing Energy Costs of Silicon Computing 152		
	13.2	Quantum Computing 152		
	13.3	Charge Qubit 154		
	13.4	Silicon-Based Quantum-Computer Qubits 155		
	13.5	Adiabatic Quantum Computation 157		
	13.6	Analog to Digital Conversion (ADC) Using RSFQ Logic 159 Opportunity for Innovation in Large-Scale Computation 160 References 161		
	14	Looking into the Future 163		
	14.1	Ideas, People, and Technologies 163		
	14.2	Why the Molecular Assembler of Drexler: One Atom at a Time, Will Not Work $$ 166		
	14.3	Man-Made Life: The Bacterium Invented by Craig Venter and Hamilton Smith 169		
	14.4	Future Energy Sources 171		
	14.5	Exponential Growth in Human Communication 173		
	14.6	Role of Nanotechnology 175 References 175		