

Table of Contents

High Purity Organic Molecular Crystals	
Norbert Karl	1
Rare-Earth Germanates	
Ludmila N. Demianets, Anatoly N. Lobachev, and	
Gennadi A. Emelchenko	101
Growth, Properties and Applications of Narrow-Gap Semiconductors	
Horst Maier and Joachim Hesse	145
Author Index Volumes 1–4	221

High Purity Organic Molecular Crystals

Norbert Karl

Physikalisches Institut and Kristallabor, Universität Stuttgart, Pfaffenwaldring 57,
D-7000 Stuttgart 80

The article reviews the preparation of highest purity organic crystals which are of rapidly growing importance for the understanding of basic processes and for the innovation of practical applications. High purity can be obtained by zone refining in combination with other methods. For the characterization of the crystals, grown from the melt or by sublimation, sensitive methods have been developed, being able to detect impurities down to well below 1 ppm. The author's extensive practical experience is condensed into reliable technical prescriptions and valuable advices and hints.

Table of Contents

1	Introduction	4
1.1	Preface	4
1.2	Scope of the Field Covered	4
1.3	Some General Properties of Organic Molecular Crystals	8
1.4	Outline of the Paper	11
2	Purification	12
2.1	Zone Refining	12
2.1.1	Theoretical Aspects	12
2.1.2	Conclusions for the Laboratory	21
2.1.3	Practical Realization	26
2.1.4	Results and Improvements	32
a)	Illustrative Example	32
b)	Zone Refining Results with Easily Removable Impurities	33
c)	Experimental Distribution Coefficients	34
d)	Critical Zone Refining Tests	37
e)	Purification with k Close to One	38
f)	Back Diffusion	38
g)	Other Difficult Systems	40
h)	Normal or Reverse Zone Refining?	40

i) Eutectic Zone Refining	41
j) Complex Zone Refining	41
2.2 Other Purification Techniques	41
2.2.1 Sublimation	41
2.2.2 Distillation	42
2.2.3 Recrystallization	42
2.2.4 Column Chromatography	43
2.2.5 Purification via Chemical Reactions	45
2.2.6 Synthetic Preparation	46
2.3 Practical Results of Combined Purification Methods	46
3 Crystal Growth	47
3.1 Bridgman Growth	47
3.1.1 General Aspects	47
3.1.2 Material Transfer	48
3.1.3 Practical Realization of Bridgman Growth	49
a) Equipment	49
b) Seeding	51
c) Phase Boundary	51
d) Speed	51
e) Adhesion to the Wall	52
f) Doping	52
3.1.4 Examples of Bridgman Crystals	53
3.2 Sublimation Growth	55
3.2.1 General Aspects	55
3.2.2 Sublimation Growth with Point-like Heat Sink	56
3.2.3 Extended Heat Sink	57
a) Capillary Sublimation	58
b) Plate Sublimation	59
3.2.4 Epitaxial Sublimation Growth	65
3.3 Other Crystal Growth Techniques	67
3.3.1 Nacken-Kyropoulos and Czochralski Growth	67
3.3.2 Solution Growth	68
3.3.3 Multiple Crystals from the Melt	70
3.4 Comparison of Growth Methods	70
4 Characterization	71
4.1 Chemical Defects, General	71
4.1.1 Analysis of Chemical Purity by Elemental Analysis	72
4.1.2 Gas Chromatography	72
4.1.3 Analytical Liquid Chromatography	75
4.1.4 Mass Spectrometric Isotope Analysis	76
4.1.5 Trace Detection by Optical Spectroscopy	77
4.1.6 Lifetime of Triplet Excitons and Free Charge Carriers	79
4.1.7 Selective Charge Carrier Detrapping	82
4.1.8 Orientation of Guest Molecules by ESR and TTR	83
4.1.9 X-Traps	83

4.2 Physical Defects	83
4.2.1 Lattice Vacancies	83
4.2.2 Dislocations	84
4.2.3 Mosaic Structure and Grain Boundaries	85
4.2.4 Physical Defects and the Lifetimes of Excited States	85
4.2.5 Thermal Detrapping	85
5 Preparation of Oriented Samples	86
5.1 Cleaving	86
5.2 Orienting	87
5.3 Cutting	89
5.4 Polishing	90
5.5 Storage	91
6 Properties and Applications	91
7 References	93

Rare-Earth Germanates

Ludmila N. Demianets, Anatoly N. Lobachev, and Gennadi A. Emelchenko

Institute of Crystallography, Academy of Science of the USSR, Leninsky Prospect 59,
USSR – Moscow B, 117333

Table of Contents

Introduction	102
1 Structures of Rare-Earth Germanates	102
1.1 Non-Alkali Rare-Earth Germanates	106
1.2 Alkali-Rare-Earth Germanates	110
1.3 Rare-Earth Germanates Containing Divalent Cations	116
2 Preparation of Single Crystals of Rare-Earth Germanates	118
2.1 Crystallization of Rare-Earth Germanates from Flux	118
2.2 Hydrothermal Synthesis of Rare-Earth Germanates in $\text{Ln}_2\text{O}_3\text{-GeO}_2\text{-R-H}_2\text{O}$ Systems	119
2.2.1 Basic Regularities of Phase Formation in $\text{Ln}_2\text{O}_3\text{-GeO}_2\text{-NaOH-H}_2\text{O}$ Systems	120
2.2.2 Basic Regularities of Phase Formation in $\text{Ln}_2\text{O}_3\text{-GeO}_2\text{-KF-H}_2\text{O}$ Systems	123
2.3 General Regularities of Formation of Rare-Earth-Germanates in Hydro- thermal Systems $\text{Ln}_2\text{O}_3\text{-GeO}_2\text{-R-H}_2\text{O}$	126
2.4 Hydrothermal Synthesis of Mixed Germanates Containing Divalent and Rare-Earth Ions	129
3 Some Physico-Chemical Characteristics of Rare-Earth Germanates	129
3.1 Infra-Red Spectra of Rare-Earth Germanates	130
3.2 Luminescence Properties of Rare-Earth Germanates	134
3.2.1 Luminescence Spectra	134
3.2.2 Excitation Spectra	137
3.3 Diffuse Reflection Spectra	138
3.4 Electric and Magnetic Properties of Rare-Earth Germanates	139
References	141

Growth, Properties and Applications of Narrow-Gap Semiconductors

Horst Maier and Joachim Hesse¹

AEG-Telefunken, Semiconductor Division, D-7100 Heilbronn, Federal Republic of Germany

This article reviews selected properties of the narrow-gap semiconductors $Pb_{1-x}Sn_xTe$, $Pb_{1-x}Sn_xSe$ and $Hg_{1-x}Cd_xTe$ which are accepted for infrared device applications, recently even in large-scale production.

The production aspect gave rise to a detailed description of the crystal growth as a first and decisive factor for device economy. Particular emphasis is placed on the important role of the thermodynamic parameters (phase diagrams) for growth, doping and physical properties of bulk crystals as well as epitaxial layers. The various growth methods are described and compared in detail.

The device aspect will be considered for photodetectors and tunable diode lasers as modern examples of applications in thermal imaging and gas spectroscopy around 10 μm .

Table of Contents

1	Introduction	147
2	Device Requirements	149
2.1	Infrared Detectors	149
2.1.1	Photoconductive Detectors	149
2.1.2	Photovoltaic Detectors	152
2.2	Infrared Diode Lasers	154
3	Phase Diagrams	155
3.1	Solid-Liquid Phase Diagrams	156
3.1.1	T-x and T- δ Diagrams of $(Pb_{1-x}Sn_x)_{1+\delta}Te_{1-\delta}$	158
3.1.2	T-x and T- δ Diagrams of $(Pb_{1-x}Sn_x)_{1+\delta}Se_{1-\delta}$	161
3.1.3	T-x and T- δ Diagrams of $(Hg_{1-x}Cd_x)_{1+\delta}Te_{1-\delta}$	164
3.2	Solid-Vapor Phase Diagrams	166
3.2.1	p-T- δ Diagram of $Pb_{1-x}Sn_xTe$	167
3.2.2	p-T- δ Diagram of $Pb_{1-x}Sn_xSe$	170
3.2.3	p-T- δ Diagram of $Hg_{1-x}Cd_xTe$	171

¹ Fraunhofer-Institut für Physikalische Meßtechnik, Heidenhofstraße 8, D-7800 Freiburg

3.3	Properties of Intrinsic Defects and Foreign Impurities	173
3.3.1	Native Defects in $Pb_{1-x}Sn_xTe$ and $Pb_{1-x}Sn_xSe$	173
3.3.2	Foreign Impurities in $Pb_{1-x}Sn_xTe$ and $Pb_{1-x}Sn_xSe$	174
3.3.3	Native Defects in $Hg_{1-x}Cd_xTe$	176
3.3.4	Foreign Impurities in $Hg_{1-x}Cd_xTe$	176
4	Growth of Single Crystals	177
4.1	Growth of $Pb_{1-x}Sn_xTe$ and $Pb_{1-x}Sn_xSe$	178
4.1.1	Growth from the Melt	178
4.1.2	Growth from the Solution	182
4.1.3	Growth from the Vapor	183
4.1.3.1	Synthesis of the Source Material	183
4.1.3.2	Sublimation Growth Procedure	185
4.2	Growth of $Hg_{1-x}Cd_xTe$	190
4.2.1	Growth from the Melt	190
4.2.1.1	The Bridgman Growth	190
4.2.1.2	Zone Melting and Travelling Solvent Growth	191
4.2.2	Growth and Recrystallization from Slush	193
4.2.3	Solid-State Recrystallization	195
4.2.4	Stoichiometry Annealing	198
5	Growth of Epitaxial Layers	199
5.1	Epitaxy of $Pb_{1-x}Sn_xTe$ and $Pb_{1-x}Sn_xSe$	199
5.1.1	Liquid Phase Epitaxy	199
5.1.2	Vapor Phase Epitaxy	201
5.1.3	Vacuum Evaporation Epitaxy	202
5.1.3.1	Molecular Beam Epitaxy	202
5.1.3.2	Hot-Wall Epitaxy	203
5.1.4	Rf Multicathode Sputtering	206
5.2	Epitaxy of $Hg_{1-x}Cd_xTe$	207
5.2.1	Liquid Phase Epitaxy	207
5.2.2	Vapor Phase Epitaxy	208
6	Modern Device Structures and Technologies	211
6.1	Infrared Detectors	211
6.2	Infrared Diode Lasers	213
7	References	215