Contents

Chapte	er 1. Quantitative Radiation Biology
1.1	Radiation in Society
1.2	Radiation Biology: the Interdisciplinary Discipline.
1.3	The Importance of Cellular Biology
1.4	The Quantitative Analysis of Radiation Action: a
	Brief Historical Review
1.5	Desiderata for a Quantitative Theory of Radiation
	Biology
Chapte	er 2. The DNA Molecule and Its Role in the Cell
2.1	Introduction
2.2	The Structure and Dimensions of the DNA Molecule
2.3	Base Sequences and the Genetic Code
2.4	DNA Replication
2.5	DNA in Chromosomes
2.6	The Diploid Cell, Mitosis and Meiosis
2.7	Radiation-Induced Damage to DNA
2.7.1	DNA Base Damage
2.7.2	DNA Single Strand Breaks
2.7.3	DNA Double Strand Breaks
Chapt	er 3. The Molecular Model for Cell Survival Following
•	Radiation
3.1	Historical Development
3.2	The Philosophical Framework of the Model
3.3	The Induction of DNA Double Strand Breaks by
	Radiation
3.3.1	The Induction of DNA Single Strand Breaks
3.3.2	The Induction of DNA Double Strand Breaks in
	One Radiation Event
3.3.3	The Induction of DNA Double Strand Breaks in
	Two Radiation Events
3.3.4	The Total Induction of DNA Double Strand Breaks
3.3.5	The Induction of DNA Double Strand Breaks with
	Repair
3.3.6	The Influence of Base Damage on the Production of
	Double Strand Breaks

XII Contents

3.4	The Relationship Between Cell Survival and DNA
	Double Strand Breaks
3.5	The Cell Survival Curve
3.5.1	Cell Survival as Criterium
3.5.2	Correction for Cell Multiplicity
3.5.3	The Shape of the Cell Survival Curve
3.5.4	The Analysis of Experimental Data
3.6	Variation in the Survival Curve Through the Cell
2.0	Cycle
3.7	Asynchronous Cell Populations
3.8	The Experimental Correlation Between Cell Survival
5.0	and DNA Double Strand Breaks 48
3.9	Summary
3.7	bulling
Chapter	4. Chromosomal Aberrations 51
4.1	Introduction
4.2	The Nature and Yield of Chromosomal Aberrations 52
4.3	The Classical and Exchange Theories of Radiation-
1.5	Induced Chromosomal Aberrations 54
4.3.1	The Classical Theory
4.3.2	The Exchange Theory
4.3.3	The Problem
4.4	The Molecular Theory of Radiation-Induced Chro-
1. 1	mosomal Aberrations
4.4.1	The Yield of Chromosomal Aberrations
4.4.2	The Formation of Chromosomal Aberrations by the
7.7.2	Process of Telomere-Break Rejoining
4.4.2.1	A Possible Molecular Mechanism for Rejoining Be-
V. V. 2. I	tween a Telomere and a Break and the Stabilization
	of a Broken End 62
4.4.3	The Formation of Chromosomal Aberrations by the
7.7.5	Process of Recombinational Rejoining 65
4431	Repetitive DNA
	Palindromes
4.4.3.3	
4.4.4	The Experimental Evidence for Telomere-Break
	Rejoining
4.4.4.1	
	Other Radiation Experiments
	Medical Cytology
4.4.5	The Experimental Evidence for the Process of Recip-
¬,¬,J	rocal Recombination
4.4.6	Two Mechanisms for the Formation of Chromosomal
7.7.0	Aberrations?
4461	The Molecular Nature of the Telomere
	The Role of Caffeine
T.T.U.∠	- 1 110 1 CO O O CUITOTTO

4.5	Complex Chromosomal Rearrangements	87
4.6	Gene Transplantation.	88
	•	
4.7	Summary	90
Chanto	r 5. Somatic Mutations	92
Спари	i 3. Somatic Mutations	72
5.1	Point and Chromosome Mutations	92
5.2	Some Molecular Mechanisms Which Could Give Rise	
5.4		0.2
	to Mutations from DNA Double Strand Breaks	93
5.2.1	The Rejoining of Single Stranded Tails	93
5.2.2	Resnick's Model for Gene Conversion	94
5.2.3	Resnick's Model for Reciprocal Recombination	97
5.2.4	Rejoining Between a Telomere and a Single Stranded	,
3.2.4		~~
	Tail	99
5.2.5	No Repair	100
5.2.6	The Repair Processes and Mutation Induction	100
5.3	Mutation Frequency Dose Relationships	
	• •	
5.3.1	The Induction of Mutations	
5.3.2	The Suppression of Mutation Expression	103
5.3.3	The Influence of Cell Killing	107
5.4	The Analysis of Experimental Data	
5.5		
	Two Mutations in the Same Cell Population	
5.6	The Mutation Spectrum	
5.7	Summary	117
Chapte	er 6. Correlations	118
6.1	Introduction	
6.2	The Survival-Survival Correlation	118
6.3	The Survival-Chromosomal Aberration Correlation.	120
6.4	The Correlation Between Different Chromosomal	
0.4		126
	Aberrations	120
6.5	The Correlation Between "Normal" Chromosomal	
	Aberrations and "Complex" Chromosomal Aberra-	
	tions	131
6.6	The Correlation Between Survival and Somatic	
0.0		122
	Mutation	132
6.7	The Correlation Between Two Different Mutations	
	Induced in the Same Cell Population	138
6.8	The Peak Incidence – an Implied Correlation	
6.9	What Do the Correlations Mean?	
0.7	What Do the Contrations Means	141
Chante	er 7. Repair	143
~uptt	· · · · · · · · · · · · · · · · · · ·	
7.1	Introduction	143
7.2	The Repair of DNA Single Strand Breaks and the	
1.4		144
	Dose Rate Effect	144

XIV Contents

7.2.1	Experimental Evidence on DNA Single Strand Break	
	Repair	149
7.2.2		151
7.2.3	The Exponential Repair of DNA Single Strand Breaks	
		152
7.2.4	Implications for the $\ln S/D$ Versus D Analysis	160
7.2.5	Complicated Repair Rates	161
7.2.6	Practical Difficulties in the Determination of Dose-	
7.2.0		162
7.3	The Repair of DNA Single Strand Breaks and the	
1.5		162
7.3.1	The Analysis of Repair Using Fractionation Studies	
7.4	The Repair of DNA Double Strand Breaks and the	
/. -1	Post-Irradiation Effect	167
7.4.1	The Quantitative Effect of DNA Double Strand	- 0 /
/ . *1 . 1		168
7.4.1.1	The Time Dependence of the Repair of DNA Double	100
7.4.1.1	Strand Breaks	172
7.4.2	The Quantitative Effect of DNA Double Strand	
1.4.2	Break Repair on Chromosomal Aberration Yield.	174
7.4.2	The Quantitative Effect of DNA Double Strand	1/7
7.4.3	Break Repair on Mutation Frequency	176
7 4 4	Is the Efficiency for the Repair of DNA Double	170
7.4.4	Strand Breaks Always Dose-independent?	178
7.5	The Difference Between Sub-lethal Damage Repair	170
7.5	and Potentially Lethal Damage Repair	180
	and Potentiany Lethal Damage Repair	100
Chapte	er 8. Radiation Quality	182
8.1	The Differing Shape of Dose-response Relationships	183
8.2	A Qualitative Assessment of the Dependence of the	
	α-Coefficient on Radiation Quality	189
8.3	A Qualitative Assessment of the Dependence of the	
	β -Coefficient on Radiation Quality	195
8.4	How Constant is the Value of RBE ₀ ?	
8.4.1	The Variation of RBE _a in the Cell Cycle	197
8.4.2	The Effect of Different Conditions in the Cell	198
8.4.3	Extremely High Values of RBE ₀	199
8.5	The Size of the Target	
8.6	A Calculation of the Dependence of the α - and β -	
	Coefficients on Radiation Quality	204
8.6.1	The Track Model	205
8.6.2	A Calculation of the Induction of DNA Single and	
	Double Strand Breaks	209
8.6.3	A Quantitative Assessment of the Dependence of Cell	
0.0.5	Survival on Radiation Quality	215

Contents XV

8.6.4	The Relation Between Physics, Chemistry, and	
	Biology	223
8.7	Summary	224
Chapte	r 9. Cancer	226
9.1	Introduction	226
9.2	Somatic Mutation and Cancer	227
9.2.1	Historical Development	
9.2.2	The Modern Evidence Supporting the Somatic Muta-	
7.2.2	tion Theory	227
9.2.2.1		227
9.2.2.2		229
9.2.2.3		230
	The Malignant Cell	230
9.3	Radiation-Induced Cell Transformation	235
9.4	Radiation-induced Cell Transformation	235
9.4.1	The Diploid Carrier Cell	222
9.4.2	The Tetraploid Carrier Cell	230
9.4.3	The Diploid Non-Carrier Cell	243
9.5	Extrapolation to Animals and Man	245
9.5.1	Experimental Data for Animals	245
9.5.2	Radiation-induced Malignancy in Man	252
9.5.2.1		253
9.5.2.2		255
9.6	Conclusion	256
Chapte	er 10. Genetic Effects	258
10.1	Introduction	258
• • •	The Induction of Dominant Lethal Mutations	259
10.2	Correlations Between Different Genetic End Points	266
10.3	The Correlation Between Dominant Lethality and the	
10.3.1	Yield of Chromosomal Aberrations.	266
10.2.2	1	200
10.3.2		270
10.2.2		270
10.3.3		271
	tions and Specific Locus Mutations in the Mouse.	2/1
10.3.4		271
	Lethal Mutations	2/1
10.4	The Induction of Translocations in the Spermatogonia	270
	of the Mouse	2/2
10.4.1	The Spermatogonial Stem Cell Development	274
10.4.2	Acute Irradiation	275
10.4.3	The Effect of Dose Rate	279
10.4.4	Short-Term Fractionation	28
10.4.5	Twenty-Four-Hour Fractionation	282
10.4.6	Long-Term Fractionation	287

XVI	Content
V A I	Content

,		
10.5	The Induction of Specific Locus Mutations in the	
	Mouse	90
10.6	Conclusions	93
Chapter	r 11. Synergistic Interaction	95
11.1	Introduction	95
11.2	Theoretical Development	
11.3	Agent Toxicity	
11.4	Agent Dosimetry	
11.5	Experimental Examples of Synergism	
11.5.1	The Interaction of Radiation with UV 30	
11.5.2	The Interaction of Radiation with Halogenated	•
	Pyrimidine Analogues	าร
11.5.3	The Interaction of Radiation with Nitrosourea Com-	,,
	pounds	10
11.5.4	The Interaction of Radiation with Diamide 31	15
11.6	General Discussion	
	30000000000000000000000000000000000000	20
Chapter	12. Implications	23
12.1	Radiological Protection)2
12.1.1	Sparsely Ionizing Radiation	
12.1.2	Densely Ionizing Radiation))()
12.1.2	Cancer as a Recessive Genetic Character	ンフ 2.1
12.1.4	Genetic Effects	
12.1.5	The Effect of Environmental Mutagens	
12.1.5	The Chemical Hazard	
12.3		
	• •	
12.3.1	Fractionation) /
	α-Type Sensitizer	
12.3.1.2	β-Type Sensitizer	łU
	Implications for the Choice of Sensitizer 34	10
12.4		3
12.5	Postscript	4
Referen	ces	15
Subject	Index	15