

CONTENTS

CHAPTER 1	GENERAL INTRODUCTION	
1-1	Numerical Methods	1
1-2	Domain Methods	2
1-3	Boundary Element Method	3
1-4	The Main Procedures and Features of BEM	5
1-5	The Subject of this Work	7
1-6	Contents of the Present Work	9
1-7	The Cartesian Tensor Notation	11
CHAPTER 2	POTENTIAL PROBLEMS	
2-1	Introduction	12
2-2	The Boundary Integral Formulation for Potential Problems	13
2-3	The Boundary Element Method for Potential Problems	22
2-4	Motivation and General Ideas	27
2-5	Fourier Analysis	30
2-6	Basic Formulations for Transforming the Domain Integrals into the Boundary for 2-D Problems	35
2-7	Numerical Approaches	42
2-8	Numerical Accuracy of the Transformation Formula	46
2-9	Some Further Discussions	68
2-10	Examples	73
2-11	The Transformation Formula for 3-D Poisson's Equation	90
2-12	Applications in Time-dependent Problems	95
2-13	Application in Non-linear Problems	99

	Page
CHAPTER 3 LINEAR ELASTOSTATICS	
3-1 Introduction	101
3-2 Basic Relationships of Elasticity	102
3-3 Fundamental Solution for Elastostatics	105
3-4 Somigliana Identity	108
3-5 The Boundary Integral Equations of Elastostatics	112
3-6 The Boundary Element Method in Elasticity	116
3-7 Basic Formulations for Transforming 2-D Elasticity Domain Integrals to the Boundary	117
3-8 Numerical Implementation	132
3-9 Results of Numerical Experiments	140
CHAPTER 4 APPLICATIONS IN ELASTICITY AND ELASTO- PLASTICITY	
4-1 Introduction	158
4-2 An Example of Gravitational Loading	160
4-3 An Example with a More General Type of Distributed Loading	166
4-4 Relationship between Plastic Stresses and Plastic Strains	169
4-5 The Governing Equations for Elasto- Plasticity	177
4-6 Numerical Analysis using Finite Fourier Series	181
4-7 Application to Elasto-plastic Problems	185
CHAPTER 5 PROGRAMMING	
5-1 Potential Problems	194
5-2 Elasticity Problems	196
5-3 Elasto-Plasticity Problems	198
CHAPTER 6 GENERAL DISCUSSION AND CONCLUSIONS	201
REFERENCES	204