

Contents

Part I	Environmental and Trace Analysis, Agricultural, Biological, and Medical Applications	
<hr/>		
Exploration of FTIR-Based PAS for On-Site Analysis of Volatile Contaminants in Air By D.P. Baldwin, R.W. Jones, and J.F. McClelland (With 4 Figures)	3	
Photothermal Electrostatics of the Pd-PVDF Photopyroelectric Hydrogen Gas Sensor By A. Mandelis and C. Christofides (With 1 Figure)	6	
Photoacoustic Spectra of Chlorinated Ethylenes at CO ₂ Laser Frequencies By A. Olafsson, M. Hammerich, and J. Henningsen (With 2 Figures)	9	
The Photothermal Deflection Technique (PDT): Fast Trace Gas Detection in the Atmosphere By H.S.M. de Vries, F.J.M. Harren, and J. Reuss (With 4 Figures)	12	
Photoacoustic Measurement of Vertical Ammonia Gradients in the Atmosphere By A.J.L. Verhage, R.A. Rooth, and L.W. Wouters (With 2 Figures)	16	
Interfacing Photoacoustic and Photothermal Techniques for New Hyphenated Methodologies and Instrumentation Suitable for Agricultural, Environmental and Medical Applications By D. Bićanić, H. Jalink, M. Chirtoc, H. Sauren, M. Lubbers, J. Quist, E. Gerkema, K. van Asselt, A. Miklós, A. Sólyom, Gy.Z. Angeli, P. Helander, and H. Vargas (With 6 Figures)	20	
Photoacoustic In Situ Monitoring of Trace Gases in a Rural Environment By A. Thöny, B. Brand, M. Ferro-Luzzi, and M.W. Sigrist (With 2 Figures)	28	
Photoacoustic Field Measurements of Methane By M. Fiedler, Ch. Gölz, and U. Platt (With 2 Figures)	31	
A Liquid Nitrogen Cooled CO Laser in a Photoacoustic Set-Up Monitors Low Gas Concentrations By F.G.C. Bijnen, T. Brugman, F.J.M. Harren, and J. Reuss (With 3 Figures)	34	

Photothermal Detection of Trace Chemicals by Fiber-Optic Interferometric Probe By G. Vegetti, M. Martinelli, L. Balconi, and F. Sigon (With 2 Figures)	38
Fiber Optic Modified Laser Induced Photoacoustic Spectroscopy for the Detection of Organic Pollutants in Solutions By K. Adelhelm, W. Faubel, and H.J. Ache (With 4 Figures)	41
Remote Photothermal Deflection Spectroscopy for Trace Analysis of Pesticides in Aqueous Solutions By B. Bohnert, W. Faubel, and H.J. Ache (With 3 Figures)	46
Laser Optoacoustic Probing of Biopolymer Solutions By S.V. Egerov, O.M. Zozulya, A.E. Pashin, and O.V. Puchenkov (With 2 Figures)	50
Photoacoustic Spectroscopy of Proteins in the Visible: Human Serum Albumin By A. Figari, L. Sabbioneda, and A. Zanella (With 3 Figures)	53
Photoacoustic Measurements of C ₂ H ₄ Production and Entrapment in Plants: A Comparison with Gas-Chromatographic Results By F.J.M. Harren, J. Reuss, L.A.C.J. Voesenek, R.H. Thier, and C.W.P.M. Blom (With 2 Figures)	56
Interpretation of the Photoacoustic Effect on Leaves by Evolution and Transport of Heat and Oxygen By P. Korpiun and S. Malkin (With 2 Figures)	59
Photoacoustically Monitored Energy Dissipation and Xanthophyll Cycle Compared in Two Durum Wheat Varieties Exposed to a High-Light Treatment By M. Eyletters and R. Lannoye	62
Deconvolution of Photobaric and Photothermal Signals from Spinach Leaves By J.F.H. Snel, M.W. Polm, W.F. Buurmeyer, and W.J. Vredenberg (With 3 Figures)	65
In Vivo State Transitions as Followed by Photoacoustically Measured Energy Storage By M. Charland, K. Veeranjaneyulu, D. Charlebois, and R.M. Leblanc (With 2 Figures)	69
Laser-Induced Optoacoustic Spectroscopy (LIOAS) of Bacteriorhodopsin (BR): A Mathematical Model and Temperature Studies By M. Rohr, W. Gärtner, and S.E. Braslavsky (With 4 Figures)	73

Sub-ps and ns Laser-Induced Optoacoustic Spectroscopy (LIOAS) of Bacteriorhodopsin (BR) By M. Rohr, W. Gärtner, G. Schweitzer, A.R. Holzwarth, and S.E. Braslavsky (With 3 Figures)	77
Fourier Transform Infrared Photoacoustic Spectra of Bacteria By M. Ardeleanu, R. Morisset, and L. Bertrand (With 4 Figures)	81
New and Versatile Method for Thermophysical Characterization of Materials: The Inverse Photopyroelectric Technique By M. Chirtoc, D. Bićanić, D. Dadarlat, and I. Chirtoc (With 2 Figures)	85
Use of an Open Photoacoustic Cell for some Applications in Agriculture By A.M. Sólyom, D. Bićanić, Gy.Z. Angeli, A. Miklós, and M. Lubbers (With 3 Figures)	88
In Vivo Evaluation of the Human Skin Permeation of Topically Applied Light Absorbing Agents by a Mirage Effect Spectrometer By K. Plamann, K. Giese, B. Sennhenn, N. Harendt, and K. Kölmel (With 3 Figures)	92
Optothermal Characterisation of Human Skin By R.M.S. Bindra, G.M. Eccleston, R.E. Imhof, and D.J.S. Birch (With 2 Figures)	95

Part II Spectroscopy

Standard Versus New Photopyroelectric (PPE) Techniques: Reflection (RPPE) and Inverse (IPPE) Configurations By M. Chirtoc, D. Dadarlat, and D. Bićanić (With 7 Figures)	103
A Tutorial on the State-of-the Art of FTIR Photoacoustic Spectroscopy By J.F. McClelland, S. Luo, R.W. Jones, and L.M. Seaverson (With 12 Figures)	113
Transient Infrared Spectroscopy By R.W. Jones and J.F. McClelland (With 4 Figures)	125
Photoacoustic Spectra of Polymer Fibres and Textile Materials By M. Kaplanová (With 1 Figure)	128
Study of Absorption Properties of Dark Coloured Textile Fabrics By A. Eickmeier and E. Schollmeyer (With 2 Figures)	131
Photoacoustic Response to X-Ray Absorption in CuO and Cu ₂ O By T. Toyoda, T. Masujima, H. Shiwaku, A. Iida, and M. Ando (With 2 Figures)	135

Photoacoustic Response to X-Ray Absorption in Copper, Phosphor Bronze, and Brass By T. Toyoda, T. Masujima, H. Shiwaku, A. Iida, and M. Ando (With 2 Figures)	138
Theory of the Photoacoustic Effect in Photoactive Samples By P. Poulet, M. Ouzafe, and J. Chambron (With 1 Figure)	141
Photoacoustic Detection of Triplet State and Singlet Oxygen By M. Ouzafe, P. Poulet, and J. Chambron (With 1 Figure)	144
Origin of Photoacoustic Signals in the Visible Spectrum of I ₂ Vapour By K. Narayanan and S.N. Thakur (With 3 Figures)	147
Fourier Transform Infrared Photoacoustic Spectroscopy of Amorphous Carbon Films By A. Raveh, L. Martinu, A. Domingue, M.R. Wertheimer, and L. Bertrand (With 3 Figures)	151
An Excitation Energy Transfer Between Monomer and Dimer of Rhodamine 6G in a Viscous Solution By J. Szurkowski (With 3 Figures)	155
Vibrational Spectroscopy of Monolayers by Pulsed Photothermal Beam Deflection (PBD) By C.D. Bain, P.B. Davies, and T.H. Ong (With 2 Figures)	158
Reverse Mirage Photothermal Beam Deflection: Theory and Experiment By C.J. Manning, F. Charbonnier, J.L. Chao, and R.A. Palmer (With 4 Figures)	161
Piezophotoacoustic Spectroscopy of Gyrotropic Layered Structures By G.S. Mityurich, V.P. Zelyony, and A.N. Serdyukov (With 1 Figure) . .	165
Photoacoustic Signal Generation and Spectra of Powders By J. Buijs, J.P. Favier, O. Dóka, and A. Miklós (With 2 Figures)	168
<hr/> Part III Non-Destructive Evaluation and Material Characterization <hr/>	
Recent Developments in the Thermal Diffusivity Measurements of Diamond Materials By P.K. Kuo, L. Wei, and R.L. Thomas	175
Photoacoustic Study of the Thermal Effusivity of Cellulose and Paper By M. Kaplanová and G. Katuščáková (With 2 Figures)	180
Photoacoustic Characterization of Calcinated and Non-Calcinated Zeolitic Chromosilicate By O. Nakamura, A.M. Mansanares, H. Vargas, H.O. Pastore, E.J.S. Vichi, N.F. Leite, and L.C.M. Miranda (With 1 Figure)	183

Photoacoustic Depth Profiling of Continuously Inhomogeneous Condensed Phases and Application to the Liquid Crystal Octylcyanobiphenyl (8 CB) By A. Mandelis, E. Schoubs, S.B. Peralta, and J. Thoen (With 1 Figure)	186
Computer Simulation of the Thermal Diffusivity Measurements of Oriented Polymer Samples Using the Mirage Effect By J. Rantala, J. Jaarinen, and P.K. Kuo (With 3 Figures)	189
The Determination of Thermal Diffusivity of Oriented Polymer Films by Means of Optical Beam Deflection By B. Skagerberg, J. Jaarinen, and J. Rantala (With 1 Figure)	193
Photothermal Measurement of Temperature Dependent Absorbance of Infrared Components By P. Eckardt, H.G. Walther, and W. Richter (With 3 Figures)	196
Numerical Analysis of Simultaneous Surface and Subsurface Features in Homogeneous Solids and in Coatings by the Mirage Technique By A. Salazar, A. Sánchez-Lavega, and J. Fernández (With 3 Figures)	199
Dichroic Ratio and Thermal Diffusivity Measurements on Polydiacetylene Single Crystal Films by Photothermal Probe Beam Deflection By X. Quelin, C. Lapersonne-Meyer, J. Berrehar, G. Louis, and P. Peretti (With 1 Figure)	202
Photothermal Analysis of Layered Materials Under Random Excitation By P. Egée, E. Mérienne, K. Hakem, M. Heuret, and M. Egée (With 3 Figures)	205
Opto-Thermal Study of Glass Properties By R.E. Imhof, R.M.S. Bindra, D.J.S. Birch, P.H. Willson, J. Locke, D.G. Sanger, and N.D. Cowan (With 2 Figures)	209
Non-Invasive Opto-Thermal Measurement of Clear Lacquer Coating Thickness By M.E. Pita de Jesus, R.E. Imhof, D.J.S. Birch, J.F. Webb, P.H. Willson, and T.A. Strivens (With 3 Figures)	213
Thermal Characterization of Low Thermal Diffusivity Glasses By M. Bertolotti, R. Li Voti, G. Liakhov, C. Sibilia, A. Montenero, and G. Gnappi (With 1 Figure)	217
Temperature Dependence of Photothermally Modulated FMR Signals: Investigation of Magnetostatic Modes in Yttrium Iron Garnet Films By M. Hoffmann, Th. Orth, O. von Geisau, and J. Pelzl (With 2 Figures)	221
Analytical Relations Between the Phase of the Photothermal Signal and the Thermal Wavelength By A. Figari (With 2 Figures)	224

A Highly Sensitive Photothermal Method for Measuring the Optical Losses in the Mirrors of the Gravitational Antenna Virgo By D. Ivanov, N. Man, J.P. Roger, and A.C. Boccara (With 1 Figure)	228
Effect of Photoelasticity on Photothermal Beam Deflection in Transparent Solids By H.J. Seo and S.I. Yun (With 2 Figures)	231
Contrast Analysis in Thermal Wave Materials Inspection. Part I: Pulsed Excitation By P.M. Patel, S.K. Lau, and D.P. Almond (With 3 Figures)	235
Contrast Analysis in Thermal Wave Materials Inspection. Part II: Periodic Excitation By P.M. Patel, S.K. Lau, and D.P. Almond (With 4 Figures)	238
Transient Thermal Wave Scattering from Disc Air Gap Defects in Homogeneous Media By P.M. Patel, S.K. Lau, and D.P. Almond (With 5 Figures)	241
Dimensionality Viewed from a Thermal Perspective By L.C. Aamodt (With 3 Figures)	245
Thickness Determination for Two-Layer Systems of Paint on Polymers with Photothermal Radiometry By W. Karpen, A. Bohnacker, H.G. Walther, K. Friedrich, U. Seidel, and G. Busse (With 3 Figures)	248
Thermal Diffusivity Measurement of Diamond Materials By L. Wei, P.K. Kuo, and R.L. Thomas (With 2 Figures)	251

Part IV Ultrasound and Kinetics, Including Ultrafast Phenomena

Femtosecond Thermoreflectivity By A. Lörincz, R.A. Bakker, A. Miklós, and J. Somlói (With 1 Figure)	257
Photoacoustic Waveforms Generated by Fluid Bodies By G.J. Diebold, T. Sun, and M.I. Khan (With 3 Figures)	263
Study of Chemical Relaxation of Dimeric Formic Acid by Photoacoustic Resonance Spectroscopy By A. Winkler, H. Jung, M. Fiedler, and P. Hess (With 2 Figures)	270
Characterization of Chemical Reactions by Thermal Lens Spectrometry By M. Franko and C.D. Tran (With 1 Figure)	273
Methane Vibrational Rates from Deconvoluting a Large Data Set with Varying Pressure, Buffer Gases, Temperature, Signal-to-Noise Ratio, and Instrumental Response By J.A. Burt, K. Yang, J.J. Caldwell, R.N. Halthore, and J.E. Allen (With 2 Figures)	276

New Aspects of Sound Generation by Light Absorption in Gases By A. Miklós	280
Photoacoustic Studies of Non-Radiative Energy Transfer in the Flexible Styrylcyanine-Rhodamine B Dye System By M.S.A. Abdel-Mottaleb, S. Negm, and H. Talaat (With 2 Figures) ..	283
Material Characterization by Interferometric Detection of Acoustically Induced Surface Displacements By P. Weiss and M.W. Sigrist (With 2 Figures)	287
An Optical Calorimeter Based on an Ultrasonic Resonator By O. Oehler, J. Wieland, D. Raillard, and M. Schumacher (With 1 Figure)	290
Optoacoustic Source as a Tool for the Investigation of Nonlinear Acoustic Effects By T.A. Dunina, S.V. Egerev, and A.T. Skvortsov (With 2 Figures)	294
Nonlinear Photoeffect at the Boundary of a Semiconductor and Liquid Helium By V.E. Gusev, S.A. Telenkov, and B.V. Zhdanov (With 1 Figure)	297
Probe Beam Detection of IR and UV Laser Polymer Ablation on the Nanosecond Time Scale By L.M. Kukreja and P. Hess (With 2 Figures)	300
Picosecond Photoacoustics in Thin Films of SiO_2 and Si_3N_4 By O.B. Wright, T. Hyoguchi, and K. Kawashima (With 1 Figure)	303
Nonlinear Regimes of Longitudinal Acoustic Pulse Excitation in Piezocrystals by Ultrashort Laser Action By V.E. Gusev and L.N. Makarova (With 1 Figure)	306
Pulsed Ultrasonic Spectroscopy Based on Laser Thermooptical Generation By A.A. Karabutov, M.P. Matrosov, and N.B. Podymova (With 3 Figures)	309
Optical Observation of Laser Induced Lamb Wave Dispersion By R. Hrovatin and J. Možina (With 5 Figures)	313
Precision Measurement of Laser Induced Surface Acoustic Wave Velocities on Silicon Single Crystals By A. Neubrand, P. Hess, H. Coufal, and R.K. Grygier (With 2 Figures)	317
Photoelastic Law Explains Optically Induced Changes in the Index of Refraction in $\text{Ti}^{3+}:\text{Al}_2\text{O}_3$ By H. Eilers, F. Kieseling, E. Strauss, and W.M. Yen (With 1 Figure) ..	320

On the Possibility of Rayleigh-Type Surface Acoustic Waves Excitation at Frequencies up to 10-100 GHz by Laser Action on a Normally Cut Superlattice By V.E. Gusev (With 1 Figure)	323
Some Applications of SAW Pulses Photogenerated in Silicon By A.A. Kolomenskii and A.A. Maznev (With 3 Figures)	326
Broad-Band Detection of Laser Excited Surface Acoustic Wave Pulses by a Novel Transducer Employing Ferroelectric Polymers By A. Neubrand, P. Hess, H. Coufal, and R.K. Grygier (With 2 Figures)	331
Optoacoustic Investigation of IR Absorption by Diffraction Gratings By A.A. Karabutov, I.A. Kudinov, V.T. Platonenko, and M.A. Sogoyan (With 2 Figures)	334

Part V Electronic Materials and Semiconductors

Competition Between Thermal and Plasma Waves for the Determination of Electronic Parameters in Semiconductor Samples By D. Fournier (With 7 Figures)	339
Photoacoustic Calibration of Silicon Photodiodes By E. Halaška, M. Dienstbier, and P. Sladký (With 5 Figures)	350
The Comparative Study of Semiconductor Structures Using Simultaneous Detection of Photoacoustic Signal and Photovoltage By R.M. Burbelo, Yu.B. Utrobin, G.I. Bulakh, A.L. Gulyaev, and I.Ya. Kucherov (With 3 Figures)	354
Photoacoustic Characterization of Ion-Implantation Damage in Silicon By T. Matsumori, M. Uchida, H. Yoshinaga, J. Kawai, T. Izumi, and F. Uehara (With 2 Figures)	357
Photoacoustic Effect in CdS Under Combined Optical Exposure By G.I. Bulakh, R.M. Burbelo, O.V. Volchanski, and I.Ya. Kucherov (With 2 Figures)	360
Electron-Induced Ionization and Thermalization in CdS Using Optical Beam Deflection Imaging By G.Y. Chang, R.B. Givens, J.W.M. Spicer, and J.C. Murphy (With 3 Figures)	363
Topography of Integrated Circuits Detected by Phase Selection in Modulated Optical Reflectance Microscopy By H.S. Li, S.Y. Zhang, J.C. Cheng, Q. Shen, and Y.S. Lu (With 2 Figures)	366
Nonlinear Response of Modulated Photoreflectance in Silicon By S.Y. Zhang, Y.S. Lu, and H.S. Li (With 1 Figure)	369

Photomodulated Optical-Reflectance Studies of Germanium: Diagnostic Separation of Temperature and Free-Carrier Effects By R.E. Wagner and A. Mandelis (With 2 Figures)	372
Surface Characterization by Modulated Photoreflectance By B.C. Forget and D. Fournier (With 3 Figures)	375
Solar Cells Studied with Modulated Reflectance By B. Büchner, R. Osiander, G. Meyer-Berg, and P. Korpiun (With 3 Figures)	378
Application of the Photothermal Beam Deflection Technique to the Measurement of Si Thermal and Electronic Parameters By A.O. Salnick, A.N. Petrovsky, D.O. Mukhin, and V.V. Zuev	381
Spatially Resolved Determination of Photogenerated Temperature and Excess Carrier Distribution in GaAsP By G. Li, A. Leyk, and L.J. Balk (With 4 Figures)	384
Subgap Photothermal Deflection Spectroscopy of Silicon Wafers By G. Amato, G. Benedetto, L. Boarino, and R. Spagnolo (With 3 Figures)	387
Theory of Pulsed Photothermal Beam Deflection Signal Formation in Semiconductors By A.N. Petrovsky, A.O. Salnick, V.V. Zuev, V.V. Grigoryev, and M.M. Mekhtiev	390
Photothermal Deflection Spectroscopy Study of the Effect of Ion Dose on the Subgap Absorption of Defects in Ion Implanted Layers of GaAs and Si By U. Zammit, F. Gasparrini, M. Marinelli, R. Pizzoferrato, A. Agostini, F. Mercuri, F. Scudieri, and S. Martellucci (With 2 Figures)	393
Influence of Carrier Recombination on the Pulsed Photothermal Beam Deflection Signal in Semiconductors By A.N. Petrovsky, A.O. Salnick, V.V. Zuev, D.O. Mukhin, M.M. Mekhtiev, J. Pelzl, A.C. Boccara, and D. Fournier (With 3 Figures)	396
Thermal Diffusivity Measurements in Semiconductors – Influence of the Carrier Diffusion and Recombination By S. Surnev and D. Ivanov (With 2 Figures)	399
Low Frequency, Photothermal Measurement of Transport Properties of Crystalline Solar Cells By B. Büchner, N. Cella, and D. Cahen (With 3 Figures)	403
Photothermal Characterization of Materials Suitable for Thin Film Solar Cells By B. Büchner and H.W. Schock (With 2 Figures)	406

Photothermal Deflection Spectroscopy and Electron Spin Resonance in Amorphous Silicon Based Alloys By G. Amato, G. Benedetto, L. Boarino, and R. Spagnolo (With 3 Figures)	408
Single Frequency Thermal Diffusivity Measurements in Semiconductors by Photothermal Deflection Spectroscopy By F. Gasparini, U. Zammit, M. Marinelli, R. Pizzoferrato, and A. Agostini (With 2 Figures)	411
Reflection and Transmission of Thermal Waves and Plasma Waves in Silicon Wafers By B.C. Forget and D. Fournier (With 4 Figures)	414
Out-of-Phase Photopyroelectric (PPE) Spectroscopy on Amorphous Semiconductors By C. Christofides and A. Mandelis (With 1 Figure)	417
Electron Acoustic Microscopy of Defects in Plastically Deformed Si Crystals By V.G. Eremenko (With 2 Figures)	420
Nonlinear Photoacoustic Effect in Semiconductors: Second Harmonic Wave Behavior By J.C. Cheng, S.Y. Zhang, Y.S. Lu, and Z.Q. Wang (With 2 Figures) . .	423

Part VI	New Topics, Experimental Techniques and Instrumentation
----------------	--

Some Theoretical and Experimental Aspects of Photothermal Imaging By H.G. Walther, K. Friedrich, R. Göring, K. Haupt, and U. Seidel (With 7 Figures)	429
Photoacoustic and Photothermal Investigations of Thin Films By E. Matthias, H. Grönbeck, E. Hunger, J. Jauregui, H. Pietsch, M. Reichling, S. Petzoldt, E. Welsch, and Z.L. Wu (With 12 Figures) . .	436
Signal Enhancement and Noise Suppression Considerations in Photothermal Spectroscopy By A.C. Tam (With 4 Figures)	447
Analytical Thermal Lens Spectrometry: Past, Present and Future Prospects By C.D. Tran (With 5 Figures)	463
Stimulated Spectroscopic Ellipsometry and Imaging in the Space, Time and Frequency Domain: A New Photothermal Probe By J. Gang, J.P. Roger, A.C. Boccara, and J.L. Stehlé (With 3 Figures)	474

Photothermal Induced Frequency Conversion of a Double Modulated Laser Beam in Layer Structures By H.D. Geiler, M. Wagner, P. Kowalski, and R. Bleiß (With 3 Figures)	477
Cavity-Enhanced Photothermal Spectroscopy: A Tool for High Sensitivity Experiments By H.A. Schuessler, J. Tang, and E.C. Benck (With 2 Figures)	482
A New Differential Probe System for the Detection of Thermal and Plasma Waves By M. Liu, M.B. Suddendorf, and M.G. Somekh (With 3 Figures)	485
Pulsed Photoacoustic Technique for the Measurement of Laser Damage Threshold in Bulk Polymers By A.V.R. Kumar, G. Padmaja, P. Radhakrishnan, V.P.N. Nampoori, and C.P.G. Vallabhan (With 3 Figures)	489
Depth Profiling of Polymer Laminates by Step-Scan Fourier Transform Infrared Photoacoustic Spectroscopy By R.M. Dittmar, J.L. Chao, and A. Palmer (With 4 Figures)	492
Methodical Studies of the Alignment Problem and Data Filtering in Photothermal Beam Deflection Experiments By B.K. Bein, M. Woelker, J. Pelzl, and H.G. Walther (With 3 Figures)	497
Nondestructive Testing of Electric Contacts by Time-Resolved Infrared Radiometry By U. Netzelmann (With 3 Figures)	501
Radiometric Detection of Small-Amplitude Thermal Waves Between 500 K and 1000 K By R. Hüttner, B.K. Bein, J.H. Gu, J. Pelzl, D.L. Balageas, and A.A. Déom (With 4 Figures)	504
Photothermal Imaging of Electric Current Distributions in Thin Metallic Films By M. Reichling, E. Welsch, C. Göbel, Z.L. Wu, D. Schäfer, and E. Matthias (With 3 Figures)	509
Induction Heating as a Selective Heat Source in Fast Thermal Non-Destructive Evaluation By R. Lehtiniemi, J. Hartikainen, J. Varis, and M. Luukkala (With 3 Figures)	512
Competition Between Normal and Transverse Heat Flow in Time-Resolved Infrared Radiometry (TRIR) By J.W.M. Spicer, L.C. Aamodt, W.D. Kerns, and J.C. Murphy (With 3 Figures)	516

Real Time Thermal Wave Tomography By L.D. Favro, H.J. Jin, P.K. Kuo, R.L. Thomas, and Y.X. Wang (With 6 Figures)	519
A Quantitative Analysis of Pulsed Video Thermographic Imaging of Subsurface Defects By S.K. Lau, D.P. Almond, and P.M. Patel (With 3 Figures)	522
Photodeflection and Interferometric Methods in Thermal Wave Spectroscopy and Microscopy of Solids By A.L. Glazov and K.L. Muratikov (With 1 Figure)	525
Photodeflection Signal Formation from Solids Within the Framework of Wave Optics By A.L. Glazov and K.L. Muratikov (With 2 Figures)	528
Pulsed Laser-Induced Temperature Changes Measured by the Photothermal Deformation Technique By J. Jauregui, Z.L. Wu, and E. Matthias (With 4 Figures)	531
Measurement of Thermal Diffusivities Using Transient Thermal Gratings By J. Jauregui and E. Matthias (With 4 Figures)	534
Measurement of the Thermal Radial Diffusivity of Anisotropic Materials by the Converging Thermal Wave Technique – Application to NDE: First Results in the Detection of Normal Cracks By F. Enguehard, A. Déom, and D. Balageas (With 3 Figures)	537
Optimization of a Mirage Setup for Thermal Diffusivity Measurements By Ph. Forge, F. Lepoutre, and M.Z. Silva (With 5 Figures)	541
Inversion of Pulsed Thermal Wave Images for Recovery of the Shape of the Object By D.J. Crowther, L.D. Favro, P.K. Kuo, and R.L. Thomas (With 6 Figures)	544
Energy Dependent Characteristics of Optoacoustic Pulses Measured by Optical Probe By J. Diaci and J. Možina (With 2 Figures)	547
Photopyroelectric Thermal Wave Spatial and Depth Resolved Imaging with Ray Optic Tomographic Reconstruction By M. Munidasa and A. Mandelis (With 2 Figures)	550
Evaluation of Magnetic Disk Heads by Photoacoustic Microscope By T. Hoshimiya, M. Ohta, and M. Kojima (With 2 Figures)	553
Rate-Window Transient Thermomodulation Spectrometry: Technique and Measurements in Semiconductors By Z. Chen and A. Mandelis (With 3 Figures)	556
Open Photoacoustic Cell Spectroscopy of Transparent Samples By N.F. Leite and L.C.M. Miranda	559

A Reliable Optothermal Sensor By P. Helander (With 1 Figure)	562
Transferable Measurement System for Fast Non-Destructive Evaluation By J. Varis, J. Hartikainen, R. Lehtiniemi, J. Rantala, and M. Luukkala (With 2 Figures)	565
High-Sensitivity Cell for Pulsed Photoacoustic Spectroscopy in Gases and Liquids By I. Carrer, L. Fiorina, and E. Zanzottera (With 3 Figures)	568
Modification of a Conventional Fourier Transform Infrared Spectrometer for Enhanced Photoacoustic Detection By S.H. Gordon, R.V. Greene, and C. Pareja (With 4 Figures)	572
Why Phase in Phase Fourier Transform Infrared Photoacoustic Spectroscopy? By L. Bertrand, A. Cournoyer, A. Domingue, and H. Marchand (With 5 Figures)	578
Photoacoustic Investigation of the Evaporation Resistance of Monomolecular Lipid Layers By W. Michelet, R. Osiander, P. Korpiun, J. Schmidt, and W. Knoll (With 4 Figures)	583
Photoacoustic Detection of Temperature Phenomena in Beeswax By H. Jalink, D. Bićanić, W.J. van der Burg, R.A. van Zwol, and J.W. Aartse (With 2 Figures)	586
Three Dimensional Acoustical Modelling of Resonant Photoacoustic Cells By Z. Bozóki, I. Gáspár, and A. Miklós (With 2 Figures)	590
Photoacoustic Signal Generation in a Long Open Tube By A. Miklós, Z. Bozóki, I. Gáspár, and Gy.Z. Angeli (With 1 Figure)	593
Dependence of the Photoacoustic Cell Constant on the Sample Gas By Gy.Z. Angeli, A.M. Sólyom, A. Miklós, and D. Bićanić (With 2 Figures)	596
Characterisation of a Photochromic Triarylmethane Dye Sulphite and Its Application to the Visualisation of Water Flows By P. Douglas, R.D. Enos, B. Azzopardi, and C.B. Hope (With 2 Figures)	600
Photorefractive Lock-In Amplifier and Thermal Wave Microscope By A. Lörincz and O. Dóka (With 3 Figures)	603
Neural Networks in the Framework of Non-Destructive Evaluation from Photothermal Experiments By S. Knerr, D. Fournier, G. Dreyfus, and A.C. Boccara (With 3 Figures)	607

Pulsed Laser Machining by Training Artificial Neural Networks with the Help of the Thermal Diffusion Equation By T. Szakács and A. Lörincz (With 1 Figure)	610
Raster Thermowave Technique of Laser Spectroscopy By S.A. Vinokurov and A.M. Skaleris (With 1 Figure)	614
<hr/>	
Part VII Phase Transitions, Heat and Mass Transfer	
<hr/>	
Photothermal Study of Heat Conduction, Diffusion, and Sorption in Thin Films and Porous Materials By P. Korpiun and R. Osiander (With 8 Figures)	619
Analysis of Photothermal Sensitivity in the Detection of Phase Transitions By A. Hadj-Sahraoui, G. Louis, P. Peretti, and J. Billard (With 2 Figures)	628
Laser Induced Photoacoustic Effect During Ferroelectric Phase Transitions By J.O. Tocho, F. Cussó, R. Ramirez, and J.A. Gonzalo (With 2 Figures)	631
A Nonlinearity in the Photoacoustic Effect at a First Order Phase Transition By P. Korpiun and J. Weiser (With 3 Figures)	634
The Anomalous Behaviour of the PPE Signal in the Critical Region of a Phase Transition – New Support for the General Theoretical Model By D. Dadarlat, M. Chirtoc, R.M. Candea, A. Frandas, and D. Bićanić (With 3 Figures)	637
Photopyroelectric Study of a Phase Transition in Liquid Crystals By F. Mercuri, M. Marinelli, U. Zammit, R. Pizzoferrato, and F. Scudieri (With 6 Figures)	641
Photopyroelectric (PPE) Detection of the Antiferromagnetic 3D–2D Phase Transition in Single Crystal La_2CuO_4 By D. Dadarlat, R.M. Candea, A. Frandas, M. Chirtoc, and D. Bićanić (With 1 Figure)	644
Acousto-Thermal Detection of the Magnetocaloric Effect By W. Otowski, C. Glorieux, R. Hofman, and J. Thoen (With 3 Figures)	647
Physical Adsorption Detected by the Mirage Effect By M.Z. Silva, Ph. Forge, F. Lepoutre, and P. Korpiun (With 2 Figures)	651

**Part VIII Surfaces, Interfaces, Thin Films,
and Heterogeneous Media**

Photothermal Detection at Surfaces and Interfaces: Developments in Non-Conventional Diagnostics By A. Mandelis	657
Heat Diffusion at a Micronic Scale By F. Lepoutre, S. Bouchoule, G. Bäckström, and D. Balageas (With 5 Figures)	664
Photothermal Investigations of Realistic Interfaces By H.G. Walther, K. Friedrich, U. Seidel, G. Busse, and W. Karpen (With 4 Figures)	669
Pulsed Photothermal Radiometry to Measure the Properties of Thin Layered Films By A.C. Tam, W.P. Leung, and H. Sontag (With 8 Figures)	672
Thermal "Superdiffusion" in the Vicinity of a Rough Surface By A.C. Boccara and D. Fournier (With 2 Figures)	679
Thermal Diffusivities of Thin Gold Films By J. Jauregui, Z.L. Wu, D. Schäfer, and E. Matthias (With 3 Figures)	682
Photoacoustic Investigation of Thin Solid Films in Contact with Liquids By C. Glorieux, E. Mens, and J. Thoen (With 2 Figures)	685
In Situ Measurement of Thin Film Growth by Photothermal Induced Frequency Conversion By H.D. Geiler, N. Winkler, and D. Schiller (With 4 Figures)	688
Thermal Characterization of Thin Layers By M. Beyfuss, H. Reichl, and J. Baumann (With 2 Figures)	692
Photodeflection Method Applied to Loss Characterization of Channel Waveguides By M. Bertolotti, L. Fabbri, R. Li Voti, and C. Sibilia (With 2 Figures)	695
High Frequency Photothermal Reflectivity and Displacement Measurements on Thin Film Samples By M. Reichling, Z.L. Wu, E. Welsch, D. Schäfer, and E. Matthias (With 3 Figures)	698
Photoacoustic Measurement of the Energy Absorption of a Pulsed Nd:YAG Laser at Cu and Al Surfaces By Y. Ito, S. Nakamura, and F. Hirakawa (With 1 Figure)	702
Directivity Pattern of OA Signals Accompanying Laser Induced Damage of a Thin Cr Film By D. Maksimović, M. Terzić, and J. Možina (With 4 Figures)	705

Investigation of Surface Laser-Ablation Plumes Using High-Sensitivity Cavity-Enhanced Detection By E.C. Benck and H.A. Schuessler (With 3 Figures)	708
The Thermal Resistance of Grain Boundaries Determined by Modulated Optical Reflectance By G. Meyer-Berg, R. Osiander, P. Korpiun, P. Kakuschke, and H. Joswig (With 3 Figures)	711
Determination of the Thickness, Density and Elastic Properties of Thin Films with Laser Generated Surface Acoustic Waves By A. Neubrand, A. Mayer, and P. Hess (With 1 Figure)	714
Macro-, Meso- and Microscopic Heat Diffusion in Ceramics By F. Lepoutre, D. Fournier, and A.C. Boccaro (With 3 Figures)	717
Non-Destructive Evaluation of Microdefects in Ceramic Materials by Means of Photoacoustic Spectroscopy By K. Iwasaki (With 3 Figures)	721
Anomalous Thermal Waves in Powdered Samples By R. Osiander, J. Lobermeier, and P. Korpiun (With 1 Figure)	725
Index of Contributors	729