Contents

1.	Introduction	
	By JP. Huignard and P. Günter	
2.	Amplification, Oscillation, and Light-Induced	
	Scattering in Photorefractive Crystals	
	By S.G. Odoulov and M.S. Soskin (With 25 Figures)	ŧ
	2.1 Fundamentals of Light Amplification Due to	
	Quasi-Degenerate Four-Wave Mixing	
	2.1.1 Beam Coupling on Dynamic Gratings: A New Type	
	of Coherent Light Amplification	
	2.1.2 Spatial Shift of Recording Patterns and Holographic	
	Gratings as Prerequisite for Energy Transfer	•
	2.1.3 Holographic Amplification of Quasi-Degenerate	
	Frequency Beams	8
	2.2 Steady-State Frequency Degenerate Amplification	
	in Two-Beam Coupling	10
	2.2.1 Amplification Due to Diffusion Nonlinearity	10
	2.2.2 Amplification at Large Transport Lengths	14
	2.2.3 Amplification Due to Circular Photovoltaic Currents	15
	2.3 Steady-State Amplification Due to Degenerate	
	Parametric Interactions	17
	2.3.1 Degenerate Backward Four-Wave Mixing	17
	2.3.2 Degenerate Noncoplanar Forward Four-Wave	
	Mixing	20
	2.3.3 Degenerate Coplanar Forward Four-Wave Mixing	
	for Orthogonally Polarized Beams	21
	2.4 Quasi-Degenerate Two-Beam Interaction	23
	2.4.1 Amplification of Difference-Frequency Waves	23
	2.4.2 Transient Energy Transfer	24
	2.5 Light-Induced Scattering	27
	2.5.1 Asymmetric Scattering in Crystals	
	with Considerable Diffusion-Type Amplification	27
	2.5.2 Polarization-Anisotropic Scattering	
	by Photovoltaic Amplification	29
	2.5.3 Forward Polarization-Anisotropic Parametric	
	Scattering	30
	•	

ΙX

	2.5.4 Polychromatic Scattering in Nonlocal-Response	
	Photorefractive Crystals	31
	2.5.5 Transient Scattering in Local-Response	
	Photorefractive Crystals	32
	2.6 Oscillation in Photorefractive Crystals	33
	2.6.1 Diffusion-Type Amplification Oscillators	35
	2.6.2 Oscillators Based on Circular Photovoltaic	•
	Currents	37
	2.6.3 Other Oscillator Types	39
	2.7 Conclusion	40
	References	41
3.	Photorefractive Effects in Waveguides	
	By V.E. Wood, P.J. Cressman, R.L. Holman,	
	and C.M. Verber (With 15 Figures)	45
	3.1 Overview	45
	3.1.1 Integrated Optics	46
	3.1.2 Optical Waveguide Formation	49
	3.2 Historical Sketch	52
	3.3 Experimental Techniques	
	3.3.1 Hologram Formation	55
	3.3.2 Single Beam Methods	55
	3.3.3 Channel Waveguide Devices	57
	3.4 Experiments on Planar Guides	59
	3.4 1 Holographic Programs	60
	3.4.1 Holographic Experiments	62
	3.4.2 Single-Beam Experiments	67
	a) Waveguide Formation	67
	b) Optical Characteristics	68
	c) Steady-State Laser Power-Handling Performance	
	of Lithium Niobate Waveguides	68
	d) Effects of Preparation Conditions;	
	"Optical Cleanup"	74
	e) Discussion	75
	3.5 Two-Step Photorefractive Processes	76
	3.5.1 Two-Photon Absorption	76
	3.5.2 Observations in Bulk Crystals	77
	3.5.3 Waveguide Experiments	79
	3.6 Photorefractivity in Channel Waveguides	81
	3.6.1 Experiments and Interpretations	84
	3.6.2 Polarization Conversion	88
	3.7 Other Materials	92
	3.8 Summary and Conclusions	93
	References	95
	Addendum	100

4.	Wave Propagation in Photorefractive Media	
	By J.O. White, Sze-Keung Kwong, M. Cronin-Golomb,	
	B. Fischer, and A. Yariv (With 34 Figures)	101
	4.1 Two-Wave Interactions Via a Third Order Nonlinearity	102
	4.1.1 Diffraction from Fixed Gratings, Coupled Wave Theory	102
	4.1.2 The Coupled Wave Theory of Dynamic Gratings	104
	4.1.3 Dynamic Gratings in the Transmission Geometry	106
	4.1.4 Dynamic Gratings in the Reflection Geometry	108
	4.1.5 Coupling Between Counterpropagating Waves	
	in a Ring Resonator	111
	4.2 Oscillation in a Resonator with Photorefractive Gain	112
	4.2.1 Nondegenerate Two-Wave Mixing	
	in a Ring Resonator	113
	4.2.2 Experimental Results	114
	4.2.3 Relaxing the Plane Wave Constant	117
	4.2.4 One-Way, Real-Time Wavefront Conversion	119
	4.3 Four-Wave Interactions Via a Third Order Nonlinearity	121
	4.3.1 Holographic Formulation of Four-Wave Mixing	122
	4.3.2 Single Grating, Undepleted Pumps Approximation	124
	4.3.3 Transmission Grating, Undepleted Pumps	125
	4.3.4 Reflection Grating, Undepleted Pumps	128
	4.3.5 Pump Depletion in the Single Grating	
	Approximation	128
	4.3.6 Transmission Grating with Pump Depletion	129
	4.3.7 Reflection Grating with Pump Depletion	131
	4.3.8 Oscillation in Four-Wave Mixing	134
	4.4 Self-Pumped Phase Conjugate Mirrors and Lasers	135
	4.4.1 Self-Pumped Mirror Based on a Fabry-Perot	
	Resonator with Photorefractive Gain	135
	4.4.2 Self-Pumped Mirrors Based on the Fanning Effect	137
	4.4.3 Laser with Dynamic Holographic Intracavity	
	Distortion Correction Capability	138
	4.4.4 Self-Pumped Mirrors as Tuning Elements	140
	4.4.5 Self-Pumped Mirror Based on a Ring Cavity	142
	4.A Appendix	145
	References	149
5.	Phase-Conjugate Mirrors and Resonators	
	with Photorefractive Materials	
	By J. Feinberg and K.R. MacDonald (With 35 Figures)	151
	5.1 A Brief History of Phase Conjugation	
	in Photorefractive Materials	152
	5.1.1 Holography	152
	5.1.2 Real-Time Holography	153

	5.1.3 Photorefractive Phase Conjugators	154
	5.1.4 Self-Pumped Phase Conjugators	155
	5.2 The Photorefractive Effect	156
	5.3 Two-Wave and Four-Wave Mixing	
	in Photorefractive Materials	160
	5.3.1 Two-Wave Mixing	161
	5.3.2 Example: Obtaining a Large Coupling	
	Strength in BSO	163
	5.3.3 Four-Wave Mixing	164
	5.4 Ring Resonators	165
	5.4.1 Unidirectional Ring Resonator	165
	5.4.2 Bidirectional Ring Resonator	168
	5.4.3 Four-Wave-Mixing Ring Resonator	169
	5.5 Self-Pumped Phase Conjugation	170
	5.6 Frequency Shifts in Self-Pumped Phase Conjugation	176
	5.7 Stimulated Scattering That Does Not Produce	
	a Phase-Conjugate Wave	179
	5.7.1 Dancing Modes	179
	5.7.2 Stimulated Scattering	180
	5.8 Applications of Phase Conjugation	184
	5.8.1 Phase-Conjugating Laser Cavity	184
	5.8.2 Phase-Locking Lasers	186
	5.8.3 Interferometry with a Self-Pumped	
	Phase-Conjugating Mirror	187
	5.8.4 Photolithography	190
	5.8.5 Parallel Optical Processing: Image Correlation,	
	Convolution, and Subtraction	191
	5.8.6 Edge and Defect Enhancement; Vibrational Modes	192
	5.8.7 Associative Memory	193
	5.8.8 Optical Novelty Filter	195
	5.9 Conclusion	195
	References	198
_	0.4 10 1 711 711	
6.	Optical Processing Using Wave Mixing	
	in Photorefractive Crystals	
	By JP. Huignard and P. Günter (With 56 Figures)	205
	6.1 Photoinduced Space-Charge Field	
	in Photorefractive Crystals	205
	6.1.1 Photorefractive Sensitivity	205
	6.1.2 Steady-State Diffraction Efficiency	207
	6.1.3 Spatial Frequency Response	209
	6.1.4 Response Time of the Photorefractive Effect	211
	6.1.5 Isotropic Bragg Diffraction	213
	6.1.6 Anisotropic Bragg Diffraction	213

	6.1.7 Space-Charge Field Nonlinearities	215
	6.1.8 Collinear Bragg Diffraction	216
6.2	Selection of Materials	218
	6.2.1 Review of Photorefractive Crystal Performance	218
	6.2.2 Crystal Quality and Availability	221
	6.2.3 Dark Storage Time	221
6.3	Holography with Photorefractive Crystals	222
	6.3.1 General Introduction	222
	6.3.2 Review of the Properties of Two- and	
	Four-Wave Mixing Configurations	223
	6.3.3 Imaging Through a Phase Disturbing Medium	226
	6.3.4 Real-Time Interferometry	228
	6.3.5 Speckle-Free Imaging	229
	6.3.6 Photolithography	232
	6.3.7 Multiple Image Storage	232
	6.3.8 Beam Deflection and Interconnection	233
6.4	Image and Signal Processing	237
	6.4.1 Image Convolution and Correlation	237
	6.4.2 Image Edge Enhancement and Inversion	239
	6.4.3 Image Subtraction and Parallel Optical Logic	241
	6.4.4 Acousto-Photorefractive Effect	242
6.5	Summary of Crystal Properties	243
6.6	Energy Transfer in Wave Mixing	
	with Photorefractive Crystals	244
	6.6.1 Degenerate and Nearly Degenerate Two-Wave Mixing .	244
	6.6.2 Degenerate and Nearly Degenerate Four-Wave	
	Mixing	247
	6.6.3 Transient Energy Transfer	248
	6.6.4 Spatial Frequency Dependence of the Gain	248
	6.6.5 Beam Ratio Dependence of the Gain	250
	6.6.6 Further Comments on the Beam Coupling	251
	6.6.7 Frequency Shifters for Photorefractive Crystals	252
	6.6.8 Summary of Crystal Performance	253
6.7	Applications of the Energy Transfer	253
	6.7.1 Image Amplification	253
	6.7.2 Interferometry of Large Objects	254
	6.7.3 Laser Beam Steering	256
	6.7.4 Amplified Phase Conjugation in Photorefractive	
	BSO Crystals	25 8
	6.7.5 Self-Induced Optical Cavities	259
	6.7.6 Image Threshold Detector Using a Phase	
	Conjugate Resonator	262
	6.7.7 Optical Logic Using Two-Beam Coupling	263
	6.7.8 Image Subtraction Using a Self-Pumped	
	Phase Conjugate Mirror Interferometer	264

	6.7.9 Associative Memories	265
	6.7.10 Laser Beam Cleanup	267
	6.7.11 Phase Locking of Lasers	268
	6.8 Conclusion	270
	References	271
		211
7.	The Photorefractive Incoherent-To-Coherent	
	Optical Converter	
	By J.W. Yu, D. Psaltis, A. Marrakchi, A.R. Tanguay, Jr.,	
	and R.V. Johnson (With 32 Figures)	275
	7.1 Overview	275
	7.2 Physical Principles and Modes of Operation	277
	7.3 Delineation of the Analytical Model	284
	7.3.1 Constant Recombination Time Approximation	284
	7.3.2 Perturbation Series Approximation	285
	7.4 The Recording Process	288
	7.4.1 Physical Model and Sample Solutions	288
	7.4.2 Nonlinear Transfer Response	295
	7.4.3 Spatial Resolution Issues for the Recording Process	300
	7.4.4 Temporal Response	3 04
	7.5 The Readout Process	310
	7.5.1 Isotropic Phase Grating Model	310 311
	7.5.2 Polarization Issues	3 11
	7.6 Conclusion	320
	7.A Appendix. Steady State and Temporal Behavior of	320
	the Space-Charge Field Components in PICOC	
	(Simultaneous Erasure/Writing Mode)	321
	7.A.1 Steady State Behavior	321
	7.A.2 Temporal Response	321
	References	324
	20010202000	324
8.	Photorefractive Crystals in PRIZ Spatial	
	Light Modulators	
	By M.P. Petrov and A.V. Khomenko (With 12 Figures)	325
	8.1 Background	325
	8.2 Basic Parameters of Spatial Light Modulators	327
	8.3 Anisotropy of the Transfer Function	321
	and Diffraction Efficiency	330
	8.4 Image Recording	
	8.5 The Transfer Function	335
	8.6 Image Transformation by the PRIZ	337
	8.7 Linearity of Image Recording	338
	8.8 Noise, Phase Distortions, Dynamic Range	341
	8.9 Speed of Operation	343
	8.10 Dynamic Image Selection	345
	5.10 2 Jumino mage Detection	34 5

8.11 Recording of "Latent" Images	348
8.12 Photoinduced Piezoelectric Phase Modulation	349
8.13 Conclusions	350
References	351
References	
Subject Index	363