Contents

1.	Wh	at Ar	e One-Dimensional Conductors?	1	
2.	Fun	dame	ntal Properties of Electronic Systems		
	in One Dimension				
	2.1		One-Dimensional Conduction Band and		
		the Peierls Instability			
		2.1.1	Conduction Electrons in a One-Dimensional Band	4	
		2.1.2	The Peierls Instability and the Peierls Transition	7	
			a) The Polarization Function	7	
			b) The Peierls Transition	12	
		2.1.3		15	
			a) Electron-Phonon Interactions	15	
			b) The Kohn Anomaly	17	
			c) The Order Parameter of the Peierls Transition.	19	
		2.1.4	Nesting of the Fermi Surface	20	
	2.2		ge Density Waves	22	
		2.2.1	Charge Density Waves and the Peierls-Fröhlich		
			Mechanism	22	
		2.2.2	Dynamics of Charge Density Waves	26	
			a) Phasons	26	
			b) Motion of the Phase	28	
			c) Pinning	29	
			d) Electrical Conduction Due to the Sliding		
			Motion of Charge Density Waves	31	
		- 1 .	e) Phase Solitons and Electrical Conductivity	32	
	2.3		uations and Three-Dimensionality	35	
		2.3.1	Fluctuations in One Dimension	36	
		2.3.2	Fluctuations and the Pseudo-Gap	38	
	0.4	2.3.3	Three-Dimensionality and the Peierls Transition	39	
	2.4	2.4.1	of the Coulomb Interaction	41	
			The Tight-Binding Model	41	
		2.4.2 $2.4.3$	Short-Range Coulomb Interactions	43	
		2.4.4	Long-Range Coulomb Interactions	45 45	
		2.4.4	The Spin-Peierls Transition	46	
		4.4.0	THE DAM-1 GEHR HUMBINGH	40	

ΙX

3.	Pro	pertie	s of TTF-TCNQ and Its Family	48		
	3.1		ular Synthesis and Crystal Growth	48		
	3.2	Electr	ical Properties	52		
		3.2.1	The One-Dimensional Conduction Band and			
			the Electrical Conductivity	52		
		3.2.2	One-Dimensionality of the Metallic Property	57		
		3.2.3	High Frequency Conductivity	61		
		3.2.4	Nonlinear Conduction in the Insulating Phase	63 64		
	3.3	Magnetic Properties				
		3.3.1	Spin Susceptibility	64		
		3.3.2	Spin Susceptibility of Each Kind of Molecular			
			Stack	67 71		
	3.4	Behav	Behaviour of the CDW			
		3.4.1	The $2k_{ m F}$ CDW and the Kohn Anomaly	71		
		3.4.2	Interchain Interactions	77		
		3.4.3	Origins of the $4k_{ m F}$ CDW	80		
		3.4.4	Dynamics of Charge Density Waves	82		
	3.5		cteristic Properties of Compounds Belonging to			
		the Fa	amily of TTF-TCNQ	86		
		3.5.1	TSeF-TCNQ	87		
		3.5.2	HMTTF-TCNQ and TMTSF-TCNQ	89		
		3.5.3	NMP-TCNQ	92		
		3.5.4	TMTSF-DMTCNQ	94 96		
	3.6	Superconductivity in (TMTSF) ₂ X and Its Family				
		3.6.1	Crystal Structure of (TMTSF) ₂ X	96		
		3.6.2	Electrical Properties	97		
		3.6.3	Superconductivity	98		
		3.6.4	Spin Density Waves	102		
		3.6.5	Orientational Ordering of Counter Anions X	103		
		3.6.6	Superconductivity in (BEDT-TTF) ₂ X	104		
			a) (BEDT-TTF) ₂ ReO ₄	104		
			b) (BEDT-TTF) ₂ I ₃	105		
4.	Properties of MX ₃					
	4.1	Preparation and Crystal Structure				
		4.1.1	Preparation of Single Crystals	107		
		4.1.2	Crystal Structure	107		
	4.2	Char	ge Density Waves in NbSe3	111		
		4.2.1	Anomalies in the dc Conductivity and			
			the Periodic Lattice Distortion	111		
		4.2.2	Conductivity Anisotropy, Hall Effect and			
			Thermoelectric Power	118		

		4.2.3	Nonlinear Electrical Conductivity: Sliding Motion			
			of Charge Density Waves	12		
			a) The dc Conductivity	12		
			b) High Frequency Conductivity and			
			Dielectric Constant	12		
			c) Electrical Noise	13		
			d) Sliding CDW: A Rigid Body?	13		
		4.2.4	Superconductivity	13		
	4.3	Char	ge Density Waves in TaS ₃	13		
		4.3.1	"Orthorhombic" (o-)TaS ₃	1:		
		4.3.2	Monoclinic (m-)TaS ₃	1:		
	4.4	Super	rconductivity in TaSe3	1		
5.	Pro	Properties of KCP				
••	5.1		d Valence Pt Compounds	14		
	5.2		al Structure and the Preparation of Single Crystals	14		
		5.2.1	Preparation of Single Crystals	14		
		5.2.2	Crystal Structure	14		
		5.2.3	Crystal Structure and Electronic States	14		
	5.3		rical Properties	1		
		5.3.1	Electrical Conductivity	18		
		5.3.2	Optical Properties	18		
	5.4		etic Properties	15		
		5.4.1	Magnetic Susceptibility	1!		
		5.4.2	Electron Spin Resonance	15		
		5.4.3	Nuclear Magnetic Resonance	1		
	5.5	Charg	ge Density Waves and the Kohn Anomaly	16		
		5.5.1	X-ray Scattering	16		
		5.5.2	Structural Analysis by X-ray and Neutron			
			Diffraction	16		
		5.5.3	Elastic Neutron Scattering	16		
		5.5.4	Inelastic Neutron Scattering	16		
	5.6	Behav	viour of the Water of Crystallization	16		
		5.6.1	Position of the Water of Crystallization	16		
		5.6.2	The Amount and Physical Properties of the Water			
			of Crystallization	16		
		5.6.3	Motion of Water Molecules and Ultrasonic			
			Anomalies	17		
		5.6.4	Motion of the Water of Crystallization			
			Studied by ¹ H NMR	17		
	5.7	\mathbf{Band}	Model and Mixed Valence Model	17		
		5.7.1	X-ray Photoelectron Spectroscopy (XPS)	17		

		5.7.2	Magnetic Properties and Electrical Conductivity	178			
		5.7.3	Nuclear Spin Relaxation of ¹⁹⁵ Pt Nuclei	180			
		5.7.4	Electron Spin Relaxation	181			
			a) Spin-Lattice Relaxation	181			
			b) Spin-Spin Relaxation	183			
		5.7.5	Neutron Diffraction	186			
		5.7.6	Raman Scattering	188			
		5.7.7	The Mixed-Valence State of Pt Ions	188			
		5.7.8	Comments on the Mixed-Valence Model	190			
6.	Pro	pertie	s of the Linear Chain Polymers $(CH)_x$ and $(SN)_x$	191			
	6.1	Prope	erties of $(CH)_x$	192			
		6.1.1	Synthesis of $(CH)_x$ and Its Structure	192			
		6.1.2	One-Electron States in the Band	193			
		6.1.3	Solitons and the Electrical Conductivity	196			
	6.2		erties of $(SN)_x$	199			
		6.2.1	The Synthesis and Structure of $(SN)_x$	199			
		6.2.2	Electronic Properties	201			
		6.2.3	Band Structure	202			
		6.2.4	One-Dimensionality and the Kohn Anomaly	204			
7.	Pro	Properties of Linear-Chain Mercury Compounds					
	7.1		esis and Crystal Structure	206			
	7.2	Metal	lic Conductivity and Superconductivity	207			
	7.3	The C	One-Dimensional Lattice of Mercury Chains	213			
		7.3.1	One-Dimensional Liquid Mercury and				
			Its Condensation	213			
		7.3.2	Mass-Density Waves	216			
Ap	pen	dix		219			
Re	fere	nces		221			
Su	bjec	t Inde	x	233			