

Contents

1. Introduction. By P. Günter and J.-P. Huignard (With 1 Figure)	1
References	4
2. Photorefractive Effects and Materials	
By P. Günter and J.-P. Huignard (With 31 Figures)	7
2.1 Generation of Charge Carriers	7
2.2 Transport of Charge Carriers	9
2.2.1 Diffusion	9
2.2.2 Drift	9
2.2.3 Photovoltaic Effect	11
2.2.4 Charge Transport Equation	13
2.3 Photoinduced Space-Charge Fields	16
2.3.1 Short Time Limit	18
2.3.2 Saturation Time Limit	20
2.3.3 Trap Density Limited Space-Charge Field	24
2.4 Photoinduced Refractive Index Changes	25
2.4.1 Transmission Gratings Without Rotation of Index Ellipsoids	26
2.4.2 Reflection Gratings	30
2.4.3 Photoinduced Index Ellipsoid Rotations	30
2.5 Isotropic and Anisotropic Bragg Diffraction from Photoinduced Gratings	30
2.5.1 Isotropic Bragg Diffraction	31
2.5.2 Anisotropic Bragg Diffraction in Uniaxial Crystals	32
2.5.3 Light Deflection by Anisotropic Bragg Diffraction in Photorefractive Materials	35
2.5.4 Anisotropic Self-diffraction in Photorefractive Materials	37
2.5.5 Anisotropic Light Scattering in Photorefractive Materials	38
2.6 Multiphoton Photorefractive Effect	39
2.7 Fixing of Phase Gratings	41
2.7.1 Fixing by Domain Reversal	41
2.7.2 Fixing by Ionic Space-Charge Fields	42
2.8 Connections with Nonlinear Optics	43
2.9 Required Properties of Photorefractive Materials	46
2.9.1 Photorefractive Sensitivity	47
2.9.2 Dynamic Range (Maximum Refractive Index Change)	52

2.9.3	Phase Shift Between Refractive Index and Light Intensity Distribution	54
a)	Steady-State $\pi/2$ Phase Shifted Component of Space-Charge Field	54
b)	Transient Phase Shift	56
2.9.4	Response Time of the Photorefractive Effect	56
2.9.5	Angular and Wavelength Selectivity	59
2.9.6	Other Requirements	60
a)	Resolution	60
b)	High Signal-to-Noise Ratio	60
c)	Wavelength	61
2.10	Materials and Properties	61
2.10.1	Oxygen-Octahedra Ferroelectrics	61
a)	Transition Metal Dopants as Photorefractive Centers	61
b)	Lithium Niobate and Lithium Tantalate	63
c)	Potassium Niobate, Potassium Niobate-Tantalate and Barium Titanate	64
d)	Barium Sodium Niobate and Barium Strontium Niobate	66
2.10.2	Sillenites	67
2.10.3	Semiconductors (GaAs, InP, CdFe, ...)	69
2.10.4	Electro-optic Ceramics	69
2.10.5	Ultraviolet Transparent Materials	70
2.10.6	Infrared Transparent Materials	70
References	70
3.	Theory of Photorefractive Effects in Electro-optic Crystals	
By G. C. Valley and J. F. Lam (With 8 Figures)	75
3.1	Historical Review	75
3.2	Space-Charge Field in the Quasi-Steady Approximation	77
3.2.1	Basic Equations	78
3.2.2	Zeroth-Order Solutions	79
3.2.3	General Solution for First-Order Quantities	81
3.2.4	Special Cases	82
a)	Steady State with No Holes, No Photovoltaic Field, No Applied Field ($E_0 = \kappa_e = \kappa_h = p_0 = p_1 = \delta\omega = 0$)	82
b)	Response Time with No Holes, Photovoltaic or Mean Field	83
c)	Applied Field with No Holes or Photovoltaic Effect	84
d)	Space-Charge Field and Response Time with Two Charge Carriers and No Applied or Photovoltaic Field	84
3.3	Grating Formation and Decay with Short Pulses	86
3.3.1	Extension of Quasi-Steady Approximation	87
3.3.2	Illumination with Delta-Function Pulses	87
3.4	Solutions to the Two- and Four-Wave Mixing Problems	89

	Contents	XI
3.4.1 Nearly Degenerate Four-Wave Mixing	90	
3.4.2 Self-pumped Phase Conjugation via Nearly Degenerate Backward Stimulated Two-Wave Mixing	93	
References	97	
4. Dynamic Holographic Gratings and Optical Activity in Photorefractive Crystals. By N. V. Kukhtarev (With 10 Figures)	99	
4.1 Dynamic Gratings in Polar Crystals	101	
4.1.1 Physical Model of Hologram Writing and Basic Equations	101	
4.1.2 Calculation of the Quasi-Static Electric Field	103	
4.1.3 Isotropic Self-diffraction and Running Gratings for Crystals with Symmetry Group $3m$	105	
4.1.4 Anisotropic Self-diffraction, Phase Conjugation, and Phase Doubling for Crystals with Symmetry Group $3m$	107	
4.1.5 Optical Multistability in Four-Wave Phase Conjugation	108	
4.1.6 Self-diffraction Gyration	110	
4.1.7 Vectorial Self-diffraction and Self-oscillation in Photogalvanic Crystals	112	
a) Starting Equations	112	
b) Kinetics of the Amplitude Changes	114	
c) Steady-State Solutions	115	
4.2 Holographic Gratings in Paraelectric Crystals with 23 Symmetry	116	
4.2.1 Basic Equations	117	
4.2.2 Calculation of the Light-Wave Amplitudes for a Geometry Without Electrogyration	118	
4.2.3 Natural and Photoinduced Electrogyration	122	
4.2.4 Anisotropic Phase Conjugation by Four-Wave Mixing	124	
4.2.5 Modulation of Beam Coupling by an Electric Field	125	
4.2.6 Real-Time Holographic Interferometry	126	
4.3 Conclusion	127	
4.3.1 Materials Studies from the Kinetics	127	
4.3.2 Phase Doubling	127	
4.3.3 Optical Hysteresis and Bistability	128	
4.3.4 Dynamic Interferometry	128	
References	128	
5. Photorefractive Centers in Electro-optic Crystals		
By E. Krätzig and O. F. Schirmer (With 22 Figures)	131	
5.1 Methods of Investigation	132	
5.1.1 Electron Spin Resonance	132	
5.1.2 Optical Absorption	134	
5.1.3 Mössbauer Effect	135	
5.2 Extrinsic Photorefractive Centers in LiNbO_3 and LiTaO_3 and Their Influence on Light-Induced Charge Transport	135	

5.2.1 Transition Metals in LiNbO_3 and LiTaO_3	137
5.2.2 Photovoltaic Effects	141
5.2.3 Photoconductivity	144
5.2.4 Holographic Investigation of Light-Induced Charge Transport	148
5.2.5 Protons and Thermal Fixing	152
5.3 Intrinsic Centers in LiNbO_3 and LiTaO_3	155
5.3.1 Overview	156
5.3.2 Nb^{4+} in LiNbO_3	157
5.3.3 The Trapped Hole Center in Undoped LiNbO_3	159
5.3.4 Intrinsic Defects in LiTaO_3	160
5.4 Centers in Various Photorefractive Crystals	161
References	163

6. Photorefractive Measurements of Physical Parameters

By R. A. Mullen (With 10 Figures)	167
6.1 Background	167
6.1.1 Nature of the Charge Transport Mechanism	168
6.1.2 Photorefractive Charge Transport via Hopping	169
a) Discretization of the Conduction Band Transport Equation	169
b) Hopping Theory	170
c) Hopping in Barium Titanate (Short Range)	171
d) Hopping in the Sillenites (Long Range)	172
6.1.3 Relevant Material Parameters	174
6.2 Photorefractive Measurement Techniques	175
6.3 The Steady State	176
6.4 "Quasi-Steady" Transient Experiments	178
6.4.1 Without Externally Applied Fields	178
6.4.2 Zero-Field Experimental Results	180
a) Experimental Description	182
b) Nonlinear Intensity Dependence	185
c) Nonexponential Decays	186
6.4.3 With Externally Applied Fields	187
6.5 Intense Short-Pulse Measurements	189
6.6 Directions for Future Experiments	191
6.6.1 Temperature	191
a) Temperature Dependence Intrinsic to Photorefractive Transport Equations	191
b) Temperature Dependence of Mobility	192
c) Measurement of Activation Energies	192
d) Importance to Applications	192
6.6.2 Topics Not Yet Investigated	193
References	193

7. Photorefractive Properties of BaTiO₃	
By M. B. Klein (With 16 Figures)	195
7.1 Basic Properties and Technology	196
7.1.1 Crystal Growth	196
7.1.2 Lattice Structure	197
7.1.3 Domains and Poling	198
7.1.4 Dielectric and Electro-optic Properties	200
7.2 Band Structure and Defects	204
7.2.1 Intrinsic Band Structure	204
7.2.2 Vacancies and Impurities	206
7.2.3 Charge Balance	207
7.2.4 Energy Levels of Fe ²⁺ and Fe ³⁺	208
7.3 Band Transport Model	210
7.3.1 Energy Level Model	210
7.3.2 Transport and Rate Coefficients	212
7.3.3 Grating Formation	214
7.4 Physical Measurements Using the Photorefractive Effect	217
7.4.1 Steady-State Measurements	218
7.4.2 Transient Measurements	222
7.5 Other Measurements in Photorefractive Crystals	224
7.5.1 Optical Absorption Coefficient Measurements	224
7.5.2 Impurity Identity and Concentrations	225
7.5.3 EPR Measurements	225
7.5.4 Correlation of Measured Parameters	227
7.6 Optimization of Photorefractive Properties	229
7.6.1 Influence of Oxidation/Reduction	230
7.7 Conclusions	234
References	234
Additional References	236
8. The Photorefractive Effect in Semiconductors	
By A. M. Glass and J. Strait (With 20 Figures)	237
8.1 Electro-optic Properties	237
8.2 Defects	239
8.2.1 Shallow Impurities	240
8.2.2 Deep Levels	240
a) GaAs:EL2	241
b) GaAs:Cr	242
c) InP:Fe	243
8.3 Transport Properties	244
8.4 Material Response Times	247
8.5 Experimental Work	249
8.5.1 Continuous-Wave Four-Wave Mixing Experiments	250
8.5.2 Pulsed Four-Wave Mixing	254

8.5.3 Beam Coupling	255
8.5.4 Four-Wave Mixing Using Injection Lasers	258
8.5.5 Nonlinear Susceptibility	259
8.5.6 Future Directions	260
8.6 Conclusion	261
References	262
 9. Nonstationary Holographic Recording for Efficient Amplification and Phase Conjugation. By S. I. Stepanov and M. P. Petrov	
(With 16 Figures)	263
9.1 Theoretical Analysis of Nonstationary Recording Mechanisms	265
9.1.1 Basic Equation for a Hologram Complex Amplitude	265
9.1.2 Recording a Moving Interference Pattern in a Steady Field	268
9.1.3 Recording a Stationary Interference Pattern in an Alternating Electric Field	269
9.1.4 Discussion	271
9.2 Light Diffraction and Degenerate Four-Wave Mixing in Cubic Photorefractive Crystals	272
9.2.1 Introduction to Four-Wave Mixing in Photorefractive Crystals	272
9.2.2 Light Diffraction from Volume Phase Holograms in Cubic Photorefractive Crystals	274
9.2.3 Four-Wave Mixing with Positive Feedback via Shifted Gratings	275
9.2.4 Discussion	277
9.3 Nonstationary Holographic Recording Mechanisms in Cubic Photorefractive Crystals	278
9.3.1 Recording Moving Interference Patterns in $\text{Bi}_{12}\text{SiO}_{20}$ (BSO) Crystals	278
9.3.2 Nonstationary Holographic Recording in an Alternating Field in $\text{Bi}_{12}\text{TiO}_{20}$ (BTO) Crystals	280
9.3.3 Discussion	282
9.4 Image Amplification and Phase Conjugation in BTO via Nonstationary Recording in an Alternating Electric Field	283
9.4.1 Image Amplification in BTO Crystals	283
9.4.2 Phase Conjugation in BTO Crystals	285
9.4.3 Discussion	287
9.5 Conclusion	287
References	288
Additional References	289
 Subject Index	291