Contents Volume IV A

Cc	ntent	s Volume IV B	C
Lis	st of C	Contributors	7
Er	ndoth	r 1 – Transport of Water and Solutes Across Capillary nelium nenkin and F.E. Curry)	
A.	Mor	phology	
B.	Deve I. II. IV. V.	Clopment of Capillary Pore Theory Ultrafiltration Diffusion Interaction of Ultrafiltration and Diffusion Evaluation of Reflection Coefficients Direct Measurement of PS by Diffusion	13
C .	The II. II. III.	Application to Single Capillaries of Frog Mesentery	18 18 23 23
D.	Char	racterization of the Cell Pathway	27
E.	Endo I. II. III. IV.	Experimental Data	28 30 33
F.	Sumi I. II.	mary	36
Αŗ	pend Mer	ix: Frictional Interaction of Solute and Solvent Molecules in Porous mbranes. Hydrodynamic Models	3 1
D.	feren		41

		er 2 — Electrochemistry of the Nephron Thuri)	4°
`		,	
A.	General II. III. IV.	Intracellular Physiology The Physical State of Intracellular Ions Electrochemical Analysis 1. Electrochemistry 2. Ion-Exchangers for Electrodes 3. The Intracellular Electrochemical Technique	40 40 49 50 50
_		•	57
в.	Pota I. II.	Muscle Fiber Potassium Renal Cell Potassium 1. Distal Tubule a) Normal Potassium Balance b) Changes in Potassium Balance c) Changes in Acid-Base Balance d) Effect of Aldosterone e) Distal Tubule: Amphiuma	59 52 52 52 53 53 54
C.	Sodii I. II.	Muscle Fiber Sodium	59 70 71
D.	Chlo I. II.	Muscle-Fiber Chloride	77 78 78 80
E.	Bicar I. II.	Muscle-Fiber Bicarbonate (pH)	32 32 35
F.	Ions	in Combination	88
G.	Sum	mary	2
Re	feren	ces	3
Cł (E	napte .L. Bo	r 3 – Electrophysiology of the Kidney pulpaep)	7
			7
В.	Elect I. II. III. IV. V.	trophysiological Methods in Renal Tubules)7)7)8)9

	Contents volume IV A	IX
C.	Proximal Convoluted Tubule I. Transepithelial Properties of Proximal Convoluted Tubule 1. Transepithelial Potential Difference	. 102
	Transepithelial Potential Difference	. 102
	Transepithelial Electrical Conductance	. 105
	Passive Transepithelial Ionic Membrane Parameters	. 106 . 110
	 II. Single Membrane Properties of Proximal Convoluted Tubule 1. Single Barrier Potential Differences	. 111
	b) The Peritubular Cell Membrane Potential Difference	. 111 . 112
	Passive Ionic Membrane Parameters of Single Barriers	. 115 . 117 . 118
_	c) Luminal Cell Membrane Properties	. 120
D.	Proximal Straight Tubule	. 123 . 124 . 124 . 124
E.	Thin Descending Limb of Henle	. 125
F.	Thin Ascending Limb of Henle	. 126
G.	Thick Ascending Limb of Henle 1. Transepithelial Potential Difference a) Mammalian Thick Ascending Limb b) Amphibian Diluting Segments 2. Transepithelial Electrical Conductance 3. Passive Transepithelial Ionic Membrane Parameters 4. "Active" Transepithelial Ionic Membrane Parameters	. 128 . 128 . 128 . 128 . 128 . 129
	Distal Convoluted Tubule	. 131 . 131 . 131 . 131 . 132
	II. Single Membrane Properties of the Distal Convoluted Tubule 1. Single Barrier Potential Differences 2. Passive Ionic Membrane Parameters of Single Barriers 3. "Active" Ionic Membrane Parameters of Single Barriers	. 135 . 135 . 135

.

•

J.	Cortical Collecting Tubule	
	I. Transepithelial Properties of Cortical Collecting Tubule	. 136
	1. Transepithelial Potential Difference	. 136
	2. Transepithelial Electrical Conductance	. 137
	3. Passive Transepithelial Ionic Membrane Parameters	
	4. "Active" Transepithelial Ionic Membrane Parameters	
	II. Single Membrane Properties of Cortical Collecting Tubule	
	11. Single Membrane Properties of Corneal Confecting Public	. 135
V	Medullary Collecting Duct	130
17.	1. Transepithelial Potential Difference	120
	2. Transepithelial Electrical Conductance	. 140
	3. Passive Transepithelial Ionic Membrane Parameters	. 140
_		1.40
Re	ferences	. 140
	outen A. Sadium Chlorida Tuongaart	
	apter 4 – Sodium Chloride Transport	
(E	E. Windhager)	. 145
Α.	Introduction	. 145
_		
В.	Proximal Tubular Transport	. 146
	I. General Properties of the Proximal Nephron	
	II. Inhomogeneity of Proximal Tubular Morphology and Function	
	III. Net Transport Rates	. 151
	IV. Electrophysiology of Proximal Tubules	
	V. Cotransport of Sodium with Sugars and Aminoacids	
	VI. Ion Permeabilities and Intercellular Shunt Path	
	VII. Active Transport of Sodium	
	VIII. Sodium and Chloride Entry Across the Luminal Cell Membrane	. 103
	IX. Transport of Sodium Chloride Across the Peritubular Cell Membrane .	. 167
	X. Coupling of Sodium and Water Reabsorption	
	XI. Passive Reabsorption of Sodium Chloride	
	XII. Regulation of Proximal Salt Reabsorption by Passive Backflux	. 175
C.	Loop of Henle	. 185
D.	Distal Convoluted Tubule	. 190
	I. General Properties	. 190
	II. Net Movement of Sodium Chloride and Water	. 191
	III. Electrophysiological Considerations	
	IV. Net Movement of Chloride	197
	V. Water	
	VI. Interaction Between Sodium and Calcium	
	VII. Mechanisms of Transport	
	1. Peritubular Membrane	
	2. Luminal Membrane	
	3. Role of Intercellular Ionic Shunt	
	4. Cellular Mechanisms of Antidiuretic Hormone Action	. 203
_	D 111 O 11 1 D	
E.	Papillary Collecting Duct	. 203
ъ	c	205
K	ferences	. 205

	Contents Volume IV A	XI
	hapter 5 – Renal Potassium Transport G. Giebisch)	215
Α.	Introduction General Aspects of Epithelial Transport of Potassium I. Constancy of Cellular Potassium Concentration II. Relationship Between Potassium and Sodium Transport III. Cellular Compartmentalization of Potassium IV. Cell Heterogeneity of Epithelium	215 216 216 218 221
C.	General Properties and Development of Concepts of the Renal Potassium Transport System	223
D.	Tubular Sites of Potassium Transport I. Proximal Tubule II. Loop of Henle III. Distal Tubule, Collecting Tubule and Collecting Duct	227 228
E.	Cellular Mechanisms of Renal Tubular Potassium Transport I. Proximal Tubular Epithelium II. Distal Tubule, Collecting Tubule and Collecting Duct 1. Electrical Potential Difference and Ionic Conductance of the Distal Tubule and Collecting Duct a) Transepithelial Potential Profile b) Properties of the Peritubular Cell Membrane c) Properties of the Luminal Cell Membrane 2. Cellular Transport Models	243 245 245 245 249 251
F.	Factors Affecting the Rate of Distal Tubule, Collecting Tubule, and Collecting Duct Potassium Transport	264 270 281
Αc	cknowledgements	292
Re	eferences	292
	hapter 6 - Cellular Aspects of Renal Tubular Acidification G. Malnic and G. Giebisch)	299
A.	Introduction	299
В.	The HCO ₃ /CO ₂ Buffer System	300
C.	Methods for the Study of Renal Acidification I. Measurement of Tubular pH II. Measurement of Tubular and Cellular Bicarbonate Concentrations III. Measurement of Tubular pCO ₂ IV. Measurement of Titratable Acidity	305 309 310

F.	Mec	hanism of Renal Tubular Acidification	
	I.	The Renal Disequilibrium pH	. 321
	II.	Evidence for Active Transport of H	. 325
	III.	Permeability of the Tubule to HCO ₃ Ions	. 327
	IV.	Permeability of the Tubule to H Ions	. 328
	V.	Participation of Proton Transport and Buffer-Base Reabsorption in	
		Tubular Acidification	. 328
G	Cour	pling of H Ion Transport to the Transport of Other Ions	226
U .	I.	Na/H Exchange	
	II.	K/H Coupling	. 220
	III.	H/Cl Coupling	
H.		trol of Renal Acidification	
	I.	The Segmental Buffer Load	. 344
	II.	The Role of Peritubular pH and pCO ₂	. 346
	III.	Peritubular Base Transfer	. 348
	IV.	Humoral Regulation of Acidification	. 349
Δ,	rknou	rledgements	250
Re	eferen	ces	. 350
~	l		
		r 7 - Transport of Calcium, Magnesium and Inorganic Phosphate	
		Kidney	
(R	.A.L.	Sutton, G.A. Quamme, and J.H. Dirks)	. 357
A.	Calci	ium	357
	I.	Introduction	
	II.	Glomerulus	
	III.	Proximal Tubule	
	111.	1. Normal Pattern of Reabsorption	. 339 350
		2. Microperfusion and Microinjection Studies	. 339
		2. Proposed Complained Colors	. 301
		3. Free and Complexed Calcium	. 362
	T3.7	4. Mechanism of Proximal Reabsorption	
	IV.	Loop of Henle	. 366
	V.	Distal Tubule and Collecting Duct	. 370
		1. Sites of Calcium Reabsorption	. 370
		2. Hypercalcemia	
		3. Parathyroid Hormone	. 372
		4. Thiazide Diuretics and Acetazolamide	. 373
		5. Vitamin D	. 374
		6. Acidosis and Alkalosis	. 375
		7. Phosphate Loading and Phosphate Deficiency	
		8. Miscellaneous Factors	. 376
В.	Mag	nesium	. 377
	I.	Introduction	
	II.	Glomerulus	
	III.	Proximal Tubule	
		1. Pattern of Reabsorption	
		2. Mechanism of Proximal Reabsorption	201
	IV.	Loop of Henle	
		1. Pattern of Reabsorption in the Loop	201
		2 Mechanism of Loop Reabsorption	. 381

		Contents Volume IV A		XII
	V.	Distal Tubule and Collecting Duct		201
	VΪ.	Regulation of Magnesium Reabsorption by the Kidney	• •	. 303
		Relationship of Magnesium Reabsorption to Other Cations		. 303
	VIII	. Hormonal Effects		. 380
	A 117	1 Dorothyroid Hormone		. 38
		1. Parathyroid Hormone		. 387
		2. Adrenocortical Steroids	• •	. 387
	T37	3. Other Hormones		. 388
	IX.	Other Factors Affecting Magnesium Reabsorption		. 388
		1. Acidosis and Alkalosis		. 388
		2. Alcohol		. 388
		3. Diuretics		. 389
C.	Phos	phate		. 389
	I.	Introduction		
	II.	Glomerular Filtration		
	III.	Proximal Tubule		
		1. Profile of Pi Reabsorption		
		2. Relationship of Phosphate to Sodium Reabsorption		
		3. Mechanisms of Phosphate Reabsorption in the Proximal Tubule .	• •	. 334 206
		4. Effect of Parathyroid Hormone (PTH) and Luminal pH	• •	. 393
		5. Phosphate Infusion		
		6. Phosphate Depletion		
		7. Renal Failure		
		8. Effects of Calcium Upon Phosphate Reabsorption		401
		9. Other Endocrine Influences on Phosphate Transport		
		a) Vitamin D		
		b) Calcitonin and Growth Hormone		
		c) Insulin and Glucose		403
	IV.	Loop of Henle		
	V.	Distal Tubule and Collecting Duct		405
Re	eferen	ces		407
		n C. Danal Transport of Organia Salutas		
	_	r 8 – Renal Transport of Organic Solutes		412
•		lrich)		
A.	Intro	duction		413
В.	Site o	of Transport of Organic Solutes within the Nephron		414
		ods of Evaluating Renal Transport of Organic Solutes		
C.		Transtubular Measurements		
	II.	Electrical Measurements		
	III.	Transport Studies with Membrane Vesicles		410
	IV.	Transport Studies with Reconstituted Liposomes		41/
D.	Theo	retical Considerations on Na ⁺ -Coupled Transport Processes		417
E.	Trans	sport of Sugars		418
	I.	Specificity or Structural Requirements		418
		1. Sugars that are Actively Transported		419
		2. Sugars that are Not Actively Transported		
	II.	Sodium-Dependence of the Active Sugar Transport		421
	III.	Binding of Sugars and Phlorrhizin to Brush-Border Membranes	•	423
		Transport of Sugars and Na ⁺ Across the Brush-Border Membrane		

		1. Electrical Measurements	424
		2. Transport Measurements on Brush-Border Vesicles	426
		3. Transport Across Vesicles from the Contraluminal Cell Side	427
		4. Transport Across Proteoliposomes	428
		Fit of Data Gained by Different Methods	428
	V.	Fit of Data Gained by Different Methods	100
F.	Tran	sport of Aminoacids	429
•	I.	Current Droblems in Determining the Specificity	72/
	II.	Sodium-Dependence of the Active Transport of Aminoacids	431
		1 Macourement Across the Whole Proximal Tubule	431
		2 Electrical Messurements	432
		2 Transport Measurements on Membrane Vesicles	+3 +
	III.	Unsolved Problems	435
_		asport of Organic Acids and Bases	. 436
G	. Tran	Transport Steps at Either Cell Side	437
	I.	Nature of the Driving Forces for the Organic Acid Transport	. 438
	II.	Physicochemical Characteristics of Substituted Phenolsulfonphthalein	
	III.	Dyes in Relation to Binding and Transport	. 439
		Is there Any Parallelism Between the Organic Acid Transport System	
	IV.	in Kidney and Red Blood Cells?	. 440
		Substrate-Induced Stimulation of Organic Acid Transport	. 440
	V.	Substrate-induced Stimulation of Organic Field Transport	4 4 1
Н	. Trai	nsport of Organic Buffers by Nonionic Diffusion	. 441
			. 443
K	efere	nces	
•	hant	er 9 – Transport of Water: Renal Concentrating Mechanism	
"	TIAPE	Gottschalk and W.E. Lassiter)	. 449
(1	ے. W . ۲	Ootischark and W.E. Edisorer/	440
A	. Intr	roduction and Historical Perspective	. 442
T.	Loc	polization of the Concentrating Process: An Overview	. 451
	I.	The Nephron	. 751
	II.	The Vasa Recta	. 457
		The value state of	458
C	C. Co	untercurrent Multiplier Systems	. 430
T	Co	untercurrent Multiplication in the Inner Medulla: Function of the Thin Limb)S
_	of F	Henle's Loop	. 461
_			. 470
	≷efere	ences	

Contents Volume IV B

Cha (J.A	pter . Sch	10 – Perfusion of Isolated Mammalian Renal Tubules (afer and T.E. Andreoli)	473
A. I	ntro	duction	473
В. Е	Expe	rimental Techniques: Practical and Theoretical Considerations	475
I		Isolation of Renal Tubule Segments	475
Ι	I.	Tubular Perfusion	476
I	II.	Perfusing and Bathing Solutions	479
I	V.	Measurement of Net Volume Absorption	481
		1 Collection Method	481
		2. Crimped-End Method	482
1	√ .	Assessment of Hydraulic Conductivity	483
		1. The Unstirred Layer Problem	403
		2. The Hydraulic Conductivity Coefficient	488
1	VI.	Electrical Measurements	489
		2. Ionic Dilution Potentials	492
		3. Measurement of Transepithelial Resistance	493
,	.711	Tracer Flux Measurements	494
	V 11.	1 Unidirectional Lumen-to-Bath Fluxes	493
		2 Unidirectional Bath-to-Lumen Fluxes	496
		2 Evaluating P. From Tracer Fluxes	490
		4. Transmembrane Fluxes	498
			400
C.	Tran	sport Properties of Isolated Nephron Segments	400
	I.	Suitability of the <i>In-Vitro</i> Preparation	499
	II.	The Proximal Tubule	495 500
		1. Dissipative Transport Properties	502
		Active Transport Processes	
		a et 1 D Dueto	505
		tore At a Lambing Library and Isotonic Fillia Adsorbious	
		5 Heterogeneity of Tubular Structure and Function	. 503
	III.	The Loop of Henle	. 510

	IV.	and a second and contains buck bysicing	
		1. Distal Convoluted Tubule	516
		2. Cortical Collecting Tubule	516
		3. Water and Nonelectrolyte Permeation in the Cortical Collecting Duct:	
		the Mechanism of ADH Action	517
Re	eferen	ices	525
C	hante	r 11 – Metabolic Correlates of Tubular Transport	
		ne)	529
Α.	Intro	oduction	529
В.		sport-Related Parameters of Metabolic Activity in Intact Cells	
	I.	General Aspects	530
	II.	Heat Production in the Kidney	530
	III.	O ₂ Consumption and CO ₂ Production in the Kidney	531
	IV.	Effect of Metabolic Inhibitors on the Transepithelial Transport	
		of Sodium	534
	V.	Renal Substrate Metabolism in Relation to Renal Function	540
		1. Uptake and Oxidation of Substrates in Relation to Sodium Transport .	540
		2. Substrate Dependence of Sodium Transport in Isolated Systems	541
C.	Tran	sport-Related Intracellular Parameters of Metabolic Activity	545
	I.	Determination of Enzyme Activities	545
	II.	Determination of ATP Content and ATP Turnover	546
	III.	ATP Content and α -Aminoisobutyric Acid Transport	
		in Kidney Cortex Slices	547
D.	Ener	getics of Transport as Studied with Isolated Renal Plasma Membranes	548
	I.	General Aspects	548
	II.	Transport-Related ATP Hydrolases	549
		1. Sodium	
		2. Calcium	
		a) Properties of Renal Ca ⁺⁺ -Activated ATPases	550
		b) Possible Relation of Ca ⁺⁺ -ATPase to Transepithelial	550
		Ca ⁺⁺ Transport	551
		3. Bicarbonate and Protons	552
		4. Chloride	553
	III.	Sodium-Solute Cotransport Systems	554
		1. General Aspects	554 554
		2. General Characteristics of Transport by Renal Vesicles	554
		3. The Sodium Gradient as the Driving Force of Intravesicular	
		Accumulation	555
		4. The Electrical Membrane Potential as the Driving Force	
		of Intravesicular Accumulation	557
		5. Energetics of Transcellular Transport in the Proximal Convoluted	
		Tubule	558
Ac	know	ledgements	550
			JJ7
Re	feren	ces	550

		Contents Volume IV B	XVII
Ch	apte	er 12 – Transport in Salivary and Salt Glands	
(I.,	4. Y	oung and E.W. van Lennep)	563
	Part I: Salivary Glands		
A.	Intro	oduction	563
B.	Ana	tomy and Anatomical Terminology	564
	I.	Secretory Endpieces	564
	II.	The Duct System	565
	III.	Myoepithelial Cells	. 566
_	Tran	asport of Water and Electrolytes	
	I.	Theories of Secretion of Water and Electrolytes by Salivary Glands	567
	II.	Formation of the Primary Saliva	. 567
	11.	1. Evidence Concerning the Site or Sites of Fluid Secretion	. 568
		by Salivary Glands	560
		2. Control of Secretion and Innervation of Endpieces	573
		3. Composition of the Primary Secretion	. 3/2
		a) Osmotic Activity	. 3/3
		i) Bicarbonate	. 5/8
		ii) Sodium	. 578
		iii) Potassium	
		iv) Chloride	
		c) Organic Solutes	. 580
		c) Organic Solutes	. 580
		5. The Stimulated Endpiece Cell	. 581
		a) Receptors and Receptor Pharmacology	
		b) The Secretory Potential and Associated Ionic Fluxes	
		i) Cholinergic Stimulation	507
		iii) Transients	
		c) Stimulus-Secretion Coupling. Calcium Ions and Cyclic	. 600
		Nucleotides	600
		i) Mediation of α -Adrenergic and Cholinergic Responses	
		ii) Mediation of β -Adrenergic Responses	
		6. Isotonic Fluid Transport	
1	II.	Ductal (Secondary) Modification of the Primary Secretion	
		1. Flow Rate and Electrolyte Excretion Patterns in Final Saliva	
		a) Parasympathetic and Parasympathomimetic Stimulation	608
		i) Sodium	
		ii) Potassium	
		iii) Bicarbonate	
		b) Sympathetic and Sympathomimetic Stimulation	
		c) Excretory Patterns for Calcium, Magnesium and Phosphate	
		i) Calcium	
		ii) Magnesium	
		iii) Phosphate	
		2. Micropuncture and Perfusion Studies of Salivary Duct Function	
		a) Permeability Properties of Salivary Ducts	
		i) Sodium	
		ii) Potassium	627

Contents Volume IV B

		iii) Anions		629
		iv) Water and Urea		632
		b) Active Transport and Carrier-Mediated Passive Transport		
		by Salivary Ducts		633
		i) Minimum Requirements for Maintenance of Active		
		Transport		631
		ii) Sodium Reabsorption	•	634
		iii) Potassium Secretion	•	631
		iv) Transport of Bicarbonate or Protons	•	630
		c) A Transport Model for the Duct Epithelium	٠	640
		3. Innervation and Autonomic Control of Ductal Transport	•	640
		4. Endocrine Control of Ductal Transport	٠	043
		a) Mineralocorticoids	•	048
		h) Angiotensin	•	648
		b) Angiotensin	•	653
		c) Gastrointestinal Polypeptide Hormones and Related Substances.	•	65.
		5. Relative Roles of Granular, Striated, and Excretory Ducts		
		in Saliva Formation	•	654
D	. Trai	nsport of Proteins		655
	I.	Transport of Albumin	•	03. 454
	II.	Transport of Immunoglobulin A (IgA)	٠	030
	III.	Transport of Secretory Proteins	٠	050
	111.	1 Untake of Amino Acids into Secretary C-11.	•	65/
		Uptake of Amino Acids into Secretory Cells	٠	659
		2. Intracellular Transport	•	659
	IV.	3. Discharge of Secretion Granules	•	661
	IV.		•	662
		1. Control of Amylase Release	•	662
		2. Control of Mucoprotein Release	. 1	663
		3. Protein Secretion by Rodent Granular Duct Cells	. (664
R	eferer	nces		
•	DICICI.	1003	. (665
_				
Pa	ırt II:	Salt Glands	. (675
A.	. Intro	oduction	. (675
В.	Stru	cture of Salt Glands	. (677
	I.	Microanatomy	. (677
	II.	Ultrastructure	. (578
_				
С.	Ada	ptation to Salt Loading	. 6	580
D.	Neu	ral and Hormonal Control of Salt Gland Secretion	. (581
Ε.	Flow	Rates and Electrolyte Concentrations	. (582
۲.	The.	Mechanism of Salt Secretion by the Tubular Endpiece	. 6	583
j.	I he	Role of the Duct System	. 6	589
40	Know	vledgements	. 6	5 9 0
₹e	teren	ces	-	200

		Contents Volume IV B	XIX			
Chapter 13 – Gastric Secretion (T.E. Machen and J.G. Forte)						
		oduction				
В.	Mor I.	phological Features of Gastric Mucosa				
	1. 11.	Histology	694 697			
\mathcal{C}	Ion '	Transport				
C.	I.	General				
	Π.	H ⁺ Secretion				
	•••	1. Locus of H ⁺ Secretion	600			
		2. Acid-Base Balance of Oxyntic Cells	700			
		3. Anion Dependence of H ⁺ Secretion	702			
		4. Cation Dependence of H ⁺ Secretion	703			
	III.	Cl-Transport				
		1. Active Transport	704			
		2. Exchange Diffusion	706			
	IV.	Na ⁺ Absorption	708			
D.	Wate	er Transport				
	I.	Introduction				
	II.	Diffusional Permeability to Water				
	III.	Hydraulic Conductivity	711			
	IV.	Water Flow During Secretion				
		1. Hydrostatic Pressure and Ultrafiltration				
		2. Endogenous HCl Gradients and Water Secretion	714			
E.	Elec	trophysiological Analyses of Gastric Transport	716			
	I.	Electrogenic vs. Electroneutral H ⁺ and Cl ⁻ Pumps	716			
		1. The Electrogenic Hypothesis	716			
		2. The Electroneutral Hypothesis	719			
		3. Conclusions				
	II.	Intracellular PDs				
	III.	Permeability and Conductance Pathways				
		1. Transcellular and Paracellular Conductances	722 725			
	IV.	2. Cell Membrane Permeability Characteristics	723 729			
	IV.	Black Box Model of Gastric Mucosa	120			
F.	Bioc	hemical Basis of Gastric HCl Secretion	729			
	I.	Metabolic Requirements	729			
	II.	Redox Hypotheses	731			
	III.	ATP Utilization Hypotheses				
	IV.	The Search for Gastric ATPases				
		1. HCO-3-Stimulated ATPase				
		2. $(Na^+ + K^+)$ -ATPase				
	* ,	3. K ⁺ -Stimulated ATPase				
	V.	Transport Properties of Gastric Microsomal Vesicles	/37			
Acknowledgements						
References						

Chapter 14 – Transport Across Small Intestine (S.G. Schultz)	4
A. Introduction	
B. The Paracellular Pathway I. Permeability to Ions II. Permeability to Nonelectrolytes III. Electrophysiologic Implications	49 50 54
C. Active Sodium Transport	58 59
D. Relations Between Sodium Transport and the Transport of Other Solutes	71 72
E. Summary	
References	
Chapter 15 – Transport in Large Intestine (D.W. Powell)	
A. Introduction	
B. Water and Electrolyte Transport I. Epithelial Properties II. Sodium, Chloride, and Bicarbonate Transport III. Potassium Transport IV. Intestinal Secretion V. Hormones and Electrolyte Transport 78 78 79 79	32 32 35 39
C. Weak Electrolyte Transport (Ammonia and Volatile Fatty Acids) 79	15
I. Nonionic Diffusion	R
D. Conclusion	3
Acknowledgements	4
References	4
Chapter 16 – Transport Processes in the Exocrine Pancreas (I. Schulz and K.J. Ullrich)	1
A. Introduction	
B. Secretion of Electrolytes and Water I. Stimulatory Processes II. Fluid Secretion and Ionic Requirement III. Flow-Dependent Concentration Pattern in the Secreted Fluid IV. Local Transport Events as Revealed by Micropuncture and Microperfusion Techniques 81	2 2 5 7

	Contents Volume IV B	XXI
	1. Electrolytes and Water	010
	2. Electrical Potential Differences	017
V.	Mechanism of Ion Secretion	822
• •	1. Buffer Secretion	022
	a) What Buffer Components in the Perfusate Determine Buffer	. 823
	and Fluid Secretion	823
	b) Sidedness of the Buffer Transport	825
	2. Secretion of Na ⁺ Ions	826
	3. Possible Mechanism of Buffer Secretion	. 829
~ Sec	retion of Enzymes	
I.	Transport Processes in the Acini Involved in Stimulus-Secretion	0.31
	Coupling	831
	1. Secretagogues of Enzyme Secretion	831
	2. Electrophysiological Measurements	837
	3. Role of Calcium Ions	933
II.	Role of Cyclic AMP and Cyclic GMP in Stimulus-Secretion Coupling	. 833
III.	Ca ⁺⁺ and Exocytosis of Secretory Granules	. 637
IV.		947
	ake of Amino Acids Used for Enzyme Synthesis	
	wledgements	
Refere	nces	. 845
Chapt	er 17 – Transport in Gallbladder	
omp.		
	uss)	. 853
L. Rei	uss)	
L. Rei A. Intr	oduction	. 853
L. Rei A. Intr 3. Ger	oduction	. 853 . 854
L. Reu A. Intr B. Ger I.	oduction	. 853 . 854 . 854
L. Reu A. Intr B. Ger I. II.	oduction	. 853 . 854 . 854 . 855
L. Ret A. Intr B. Ger I.	oduction	. 853 . 854 . 854 . 855
L. Rei A. Intr B. Ger I. II.	oduction	. 853 . 854 . 854 . 855 . 856
L. Rei A. Intr B. Ger I. II.	oduction meral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid	. 853 . 854 . 854 . 855 . 856
L. Rei A. Intr B. Ger I. II.	oduction meral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients	. 853 . 854 . 854 . 855 . 856 . 857 . 861
L. Reu A. Intr B. Ger I. II. III.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862
L. Reu A. Intr B. Ger I. II. III.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863
L. Reu A. Intr B. Ger I. II. III.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863
L. Reu A. Intr B. Ger I. II. III.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863
L. Reu A. Intr B. Ger I. II. III.	duction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863
L. Reu A. Intr B. Ger I. II. III. C. Med	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866
L. Reu A. Intr B. Ger I. II. III.	duction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867
L. Reu L. Intr G. Ger I. II. III.	oduction neral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867
L. Reu A. Intr B. Ger I. III. L. Med I.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence 2. Morphological Evidence	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867 . 867
L. Reu A. Intr B. Ger I. II. III.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence 2. Morphological Evidence Properties of the Shunt Pathway	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867 . 867 . 869
L. Reu A. Intr B. Ger I. III. C. Med I.	oduction deral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport thanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence Properties of the Shunt Pathway 1. Physicochemical Characteristics of the Paracellular Pathway	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867 . 867 . 869 . 869
L. Reu A. Intr B. Ger I. II. III. C. Med I.	noduction neral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence Properties of the Shunt Pathway 1. Physicochemical Characteristics of the Paracellular Pathway a) Charge of the Pathway	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867 . 867 . 869 . 869 . 869
L. Reu A. Intr B. Ger I. III. C. Med I.	noduction neral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence 2. Morphological Evidence Properties of the Shunt Pathway 1. Physicochemical Characteristics of the Paracellular Pathway a) Charge of the Pathway b) Mobility of the Sites	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867 . 867 . 869 . 869 . 869 . 869
L. Reu A. Intr B. Ger I. II. III. C. Med I.	neral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence Properties of the Shunt Pathway 1. Physicochemical Characteristics of the Paracellular Pathway a) Charge of the Pathway b) Mobility of the Sites c) Evidence for a Free-Solution Parallel Pathway	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 867 . 867 . 869 . 869 . 869 . 869 . 870 . 870
L. Reu A. Intr B. Ger I. III. C. Med I.	noduction neral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport Chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence 2. Morphological Evidence Properties of the Shunt Pathway 1. Physicochemical Characteristics of the Paracellular Pathway a) Charge of the Pathway b) Mobility of the Sites	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 867 . 867 . 869 . 869 . 869 . 869 . 870 . 870
L. Reu A. Intr B. Ger I. III. C. Mec I.	neral Transport Properties Morphology of the Gallbladder Composition of Gallbladder Bile General Characteristics of Salt and Water Transport 1. Salt and Water Transport: Rate, Ion Dependency, Composition of the Transported Fluid 2. Water Transport and Transmural Osmotic Gradients 3. Metabolic and Pharmacologic Aspects of Transport chanisms of Ion Transport Black-Box Electrical Properties of the Gallbladder 1. The Transepithelial Potential Difference 2. The Transepithelial Electrical Resistance 3. Overall Transepithelial Ionic Permeabilities Demonstration of the Existence of a Paracellular Shunt Pathway 1. Electrophysiological Evidence Properties of the Shunt Pathway 1. Physicochemical Characteristics of the Paracellular Pathway a) Charge of the Pathway b) Mobility of the Sites c) Evidence for a Free-Solution Parallel Pathway	. 853 . 854 . 854 . 855 . 856 . 857 . 861 . 862 . 863 . 863 . 863 . 865 . 866 . 867 . 869 . 869 . 869 . 869 . 870 . 870

.

iv. Froperties of the Epitheliai Cell Memoranes	874
1. Electrophysiological Studies	874
a) Equivalent Circuit for Gallbladder Epithelium	874
b) Ionic Permeability of the Apical Membrane	877
c) Ionic Permeability of the Basolateral Membrane	879
2. Tracer Analysis of Electrolyte Transport	870
3. Role of the Lateral Intercellular Spaces in Ion Transport	221
4. Relative Contributions of Cell Membranes and Shunt Pathway	001
to Transporthalial Potential and Transporthalial Paristers Change	004
to Transepithelial Potential and Transepithelial Resistance Changes	882
a) Estimation of Shunt Ion Permeability Ratios from Transepithelial	
Measurements	883
b) Estimation of Cell Membrane Ion Permeability Ratios from Changes	
in Cell Membrane Potential	884
c) Effects of Transepithelial Osmotic Gradients on Potentials	
and Resistances	885
d) Effects of Transepithelial Current Pulses on Potentials	
and Resistances	887
e) Effects of Amphotericin B on Potentials and Resistances	880
-	
D. Transport of Nonelectrolytes	890
E. Water Transport	892
1. Local Osmosis Hypotheses	892
a) Three-Compartment Hypothesis	807
b) Standing-Gradient Osmotic Flow Hypothesis	901
c) Hypertonic Interspace Mechanisms with Leaky Junctions	092
ord Distributed Select Viscolations with Leaky Junctions	
and Distributed Solute Input	893
d) Influence of Transport-Dependent Asymmetries in Fluid	
Composition	894
2. Magnitude of the Hydraulic Conductivity of the Gallbladder	894
3. Route of Water Flow	895
Acknowledgements	007
References	896
Chapter 18 – Transport of Ions in Liver Cells	
Of Claret	
(M. Claret)	
A. Introduction	899
B. Ionic Concentrations and Activities	899
C. Membrane Potential	
D. Passive Fluxes	902
1. Distribution of fons	902
II. Diffusion Fluxes	902
III. Facilitated Diffusion	
1. Ouabain-Insensitive Sodium Exchange	904
	90 4 904
	904 904
TST TO A SEC 21 O 11 W	
	905
1. Effect of Calcium on Permeability	905
a) Presumed Effect of Calcium on Permeability of Junctional	
Membrane	005

Contents Volume IV B	XXIII
b) Effect of External Calcium on Permeability	907 907
E. Active Transport of Sodium and Potassium I. Ouabain-Sensitive Fluxes II. Coupling Between Sodium and Potassium Movements III. Stoichiometry of the Sodium-Potassium Pump 1. Coupling Ratio Between Sodium and Potassium Fluxes 2. Cation/ATP Ratio IV. Contribution of the Electrogenic Sodium Pump to Membrane Potential V. Energy Requirement for Sodium-Potassium Transport 1. Measured Energy Requirement 2. Theoretical Energy Requirement	908 909 910 911 912 913
F. Regulation of Cell Volume	915
G. Calcium Transport	916
Acknowledgements	918
References	918
Subject Index	. 921

.