Contents

1.	Introdu	ction. By H.P. Baltes	1
	1.1 Di	rect and Inverse Problems in Optical Physics	1
	1.2 Ro	le of Prior Knowledge	3
	1.3 Su	rvey of Specific Inverse Problems	4
	1.4 No	tation in Coherence Theory	8
	Referen	nces	10
2.	The Pho	ase Reconstruction Problem for Wave Amplitudes	
	and Col	nerence Functions. By H.A. Ferwerda (With 3 Figures)	13
	2.1 Pr	nase Reconstruction for Wave Amplitudes	14
	2.	1.1 Relevance of the Phase Problem for Object	
		Structure Determination	14
	2.	1.2 Derivation of the Basic Equations Governing	
		the Phase Problem	15
	2.	1.3 General Considerations on the Phase Problem	16
	2.	1.4 Greenaway's Proposal for Phase Recovery from a	
		Single Intensity Distribution	19
	2.	1.5 The Method of Half-Plane Apertures for Semi-Weak Objects	20
	2.	1.6 The Logarithmic Hilbert Transform: Methods for	
		Circumventing Complications Due to Zeros	22
	2.	.1.7 Phase Retrieval for Strong Objects from Two	
		Defocused Images	24
	2	.1.8 Phase Retrieval from the Intensity Distributions in	
		Exit Pupil and Image Plane	28
	2	.1.9 Phase Retrieval from Two Defocused Images for	
		Semi-Weak Objects	30
	2.2 P	nase Reconstruction for Coherence Functions	33
	2	.2.1 Phase Determination of Optical Coherence Functions	33
	2	.2.2 Determination of the Phase of the Spatial Coherence	
		Function with an Incoherent Reference Point Source	34
	2	.2.3 Determination of the Phase of the Spatial Coherence	
		Function with an Exponential Filter	36

		2.2.4	Determination of the Phase of the Spatial Coherence				
			Function from the Intensity in the Fraunhofer Plane	37			
	Refe	rences		38			
3.	The	Uniquen	ess of Inverse Problems. By B.J. Hoenders (With 2 Figures)	41			
			y of Inverse Problems	41			
		3.1.1	Inverse Sturm-Liouville Problems	41			
		3.1.2	Reconstruction Problems	42			
		3.1.3	Three-Dimensional Reconstruction from Projections	43			
	3.2	Invers	e Diffraction	44			
		3.2.1	Inverse Diffraction from Far-Field Data	44			
		3.2.2	Inverse Diffraction from Spherical Surface to				
			Spherical Surface	49			
		3.2.3	Inverse Diffraction from Plane to Plane	51			
		3,2.4	Generalization to Arbitrary Surfaces	52			
		3.2.5	The Determination of the Shape of a Scatterer				
			from Far-Field Data	53			
	3.3	Non-Ra	adiating Sources	58			
		3.3.1	Early Results and Special Cases	59			
		3.3.2	General Theory	61			
		3.3.3	Integral Equations and Uniqueness by Prior Knowledge	66			
	3.4	The De	etermination of an Object from Scattering Data	68			
		3.4.1	Examples of Nonuniqueness	70			
		3.4.2	Phase Shift Analysis and the Reconstruction of a Potential	74			
		3.4.3	The Determination of a Potential or Index of Refraction				
			from the Scattered Fields Generated by a Set of Mono-				
			chromatic Plane Waves	75			
		3.4.4	The Unique Determination of an Object from Scattering Data	77			
		3.4.5	The Analytical Continuation of the Electromagnetic Field				
			from the Exterior to the Interior of a Scatterer and Its				
			Physical Implications	78			
	Ref	erences		80			
4.	Spa	tial Re	solution of Subwavelength Sources from Optical Far-Zone Data				
	Ву	By H.G. Schmidt-Weinmar (With 17 Figures)					
	4.1	Appro	aches to Superresolution	84			
		4.1.1	Array of Sources with Known Radiation Pattern	85			
		4.1.2	Superresolution Using Evanescent Waves	86			
		4.1.3	λ-Localized Sources	86			
	4.2	Parti	al Waves Associated with Complex Spatial Frequencies	86			
	A 3	Donne	scontations and Expansions of the FM Field	91			

		4.3.1 Integral Representations	91
		4.3.2 Partial-Wave Representation of Exterior Field	94
		4.3.3 Multipole Waves	94
		4.3.4 Plane Waves	97
	4.4	Band-Limiting at Variance with λ -Localized Sources	100
	4.5	High-Frequency Information in the Far Zone Given a	
		λ-Localized Source	106
	4.6	λ-Localized Sources Reconstructed from Far-Zone Data	107
	4.7	Measurement of Phase and Magnitude of the Optical	
		Radiation Pattern	112
	4.8	Discussion	115
	Refe	rences	116
5.	Radi	ometry and Coherence	
	Ву Н	.P. Baltes, J. Geist, and A. Walther (With 4 Figures)	119
	5.1	The Development of Radiometry	120
		5.1.1 The Classical Period	120
		5.1.2 The Baroque Period	121
		5.1.3 The Modern Period	122
	5.2	Coherence of Blackbody Radiation	123
		5.2.1 Temporal Coherence	124
		5.2.2 Spatial Coherence	126
	5.3	First-Order Radiometry	127
		5.3.1 Energy Flow in Scalar Fields	127
		5.3.2 Coherence Theory and the Radiometric Quantities	129
		5.3.3 The Van Cittert-Zernike Theorem	133
		5.3.4 An Example: Quasistationary Sources	135
	5.4	Radiant Intensity and Angular Coherence	137
		5.4.1 Source Models	138
		5.4.2 Inverse Relations	139
		5.4.3 Bessel-Correlated Sources	143
		5.4.4 Gauss-Correlated Sources	144
		5.4.5 An Application: Coherence of Thermionic Sources	145
	5.5	Radiation Efficiency	146
		5.5.1 Radiance of Model Sources	146
		5.5.2 Emittance and Radiation Efficiency	147
		5.5.3 Examples	147
	5.6	Second-Order Radiometry	148
		5.6.1 Radiant Intensity Fluctuation and Autocorrelation	148
		5.6.2 Second-Order Radiometric Quantities	149
		5.6.3 An Example: Gauss-Correlated Chaotic Source	150
	Refe	rences	150

6.	Stat	istical	Features of Phase Screens from Scattering Data	
	By A	. Zarde	cki (With 6 Figures)	155
	6.1	Basic	Formulation of the Statistical Problem	156
		6.1.1	Physical Models	157
		6.1.2	Characteristic Functional of the Scattered Light	160
		6.1.3	Correlation Functions	162
		6.1.4	Gaussian Limit	164
	6.2	More G	eneral Detection and Coherence Conditions	165
		6.2.1	Gaussian Scattered Field	165
		6.2.2	Polychromatic Speckle Patterns	170
	6.3	Amplit	ude and Intensity Correlations	171
		6.3.1	Information Contained in Amplitude Correlations	171
		6.3.2	Information Contained in Intensity Correlations	173
		6.3.3	Moving Diffusers	176
	6.4	Number	-Dependent Effects	178
		6.4.1	Moments and Probability Distribution of Intensity	178
		6.4.2	Examples	180
		6.4.3	Applications	183
	6.5	Conclu	ding Remarks	184
	Refe	rences		185
Add	lition	al Refe	rences with Titles	191
C. 1		T., J.,		195
out	Ject	inaex .		122