CONTENTS

I	Population genetics
[1]	KIMURA, M. A stochastic model of compensatory neutral evolution
[2]	OHTA, T. Some models for treating evolution of multigene families and other repetitive DNA sequences
[3]	DONNELLY, P.J. and TAVARÉ, S. A genealogical description of the infinitely-many neutral alleles model
[4]	ITATSU, S. Equilibrium measures of the stepping stone model with selection in population genetics
[5]	OGURA, Y. and SHIMAKURA, N. Asymptotic properties for Kimura's diffusion model with altruistic allele
II.	Measure-valued diffusion processes related to population genetics 71
[6]	ETHIER, S. and KURTZ, T. The infinitely-many-alleles model with selection as a measure-valued diffusion
[7]	SHIGA, T. Multi-allelic Gillespie-Sato diffusion models and their extension to infinite allelic ones
[8]	SHIMIZU, A. Stationary distribution of a diffusion process taking values in probability distributions on the partitions
III.	Neurophysiology
[9]	KALLIANPUR, G. and WOLPERT, R. Weak convergence of stochastic neuronal models
[10]	SATO, S. Note on the Ornstein-Uhlenbeck process model for stochastic activity of a single neuron
IV.	Fluctuation in living cells
[11]	OOSAWA, F., TSUCHIYA, M. and KUBORI, T. Fluctuation in living cells: effect of field fluctuation and asymmetry of fluctuation
[12]	WATANABE, H. Some aspects of Oosawa's equation
v.	Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc
[13]	GANI, J. Problems of epidemic modelling
[14]	NEGORO, A. and TSUCHIYA, M. Markov semigroups associated with one-dimensional Lévy operatorsregularity and convergence

[15]	OKADA, N.
	On some conditions for diffusion processes to stay on the boundary of a domain
[16]	FIGARI, R., PAPANICOLAOU, G. and RUBINSTEIN, J. The point interaction approximation for diffusion in regions with many small holes
[17]	SATO, K. Unimodality and bounds of modes for distributions of generalized sojourn times
[18]	UCHIYAMA, K. Fluctuation in population dynamics