
Contents

Part I Basic Ideas and Fundamentals: Why Are Complex-Valued Neural Networks Inevitable?

1	Complex-Valued Neural Networks Fertilize Electronics	3
1.1	Imitate the Brain, and Surpass the Brain	3
1.2	Create a “Superbrain” by Enrichment of the Information Representation	4
1.3	Application Fields Expand Rapidly and Steadily	6
1.4	Book Organization	8
2	Neural Networks: The Characteristic Viewpoints	9
2.1	Brain, Artificial Brain, Artificial Intelligence (AI), and Neural Networks	9
2.2	Physicality of Brain Functions	12
2.3	Neural Networks: General Features	13
3	Complex-Valued Neural Networks: Distinctive Features	17
3.1	What Is a Complex Number?	17
3.1.1	Geometric and Intuitive Definition	17
3.1.2	Definition as Ordered Pair of Real Numbers	18
3.1.3	Real 2×2 Matrix Representation	19
3.2	Comparison of Complex- and Real-Valued Feedforward Neural Networks	20
3.2.1	Function of Complex-Valued Synapse and Network Operation	20
3.2.2	Circularity and Widely-Linear Systems	23
3.2.3	Nonlinearity That Enhances the Features of Complex-Valued Networks	24
3.3	Activation Functions in Neurons	26
3.3.1	Nonlinear Activation Functions in Real-Valued Neural Networks	26

3.3.2	Problem Concerning Activation Functions in Complex-Valued Neural Networks	28
3.3.3	Construction of CVNNs with Partial Derivatives in Complex Domain	28
3.3.4	Real-Imaginary-Type Activation Function	31
3.3.5	Amplitude-Phase-Type Activation Function	32
3.4	Metric in Complex Domain	34
3.4.1	Importance of Metric: An Example in Complex-Valued Self-organizing Map	34
3.4.2	Euclidean Metric	34
3.4.3	Complex-Valued Inner-Product Metric	36
3.4.4	Comparison between Complex-Valued Inner Product and Euclidean Distance	36
3.4.5	Metric in Correlation Learning	37
3.5	What Is the Sense of Complex-Valued Information and Its Processing?	38
3.6	In What Fields Are CVNNs Effective?	40
3.6.1	Electromagnetic and Optical Waves, Electrical Signals in Analog and Digital Circuits	40
3.6.2	Electron Wave	43
3.6.3	Superconductors	45
3.6.4	Quantum Computation	45
3.6.5	Sonic and Ultrasonic Waves	45
3.6.6	Compatibility of Controllability and Adaptability	46
3.6.7	Periodic Topology and Metric	46
3.6.8	Direct Use of Polar Coordinates	48
3.6.9	High Stability in Recurrent Dynamics	48
3.6.10	Preservation of Relative Directions and Segmentation Boundaries in Two-Dimensional Information Transform	49
3.6.11	Chaos and Fractals in Complex Domain	49
3.6.12	Quaternion and Other Higher-Order Complex Numbers	49
3.7	Investigations in Complex-Valued Neural Networks	50
3.7.1	History	50
3.7.2	Recent Progress	53
4	Constructions and Dynamics of Neural Networks	57
4.1	Processing, Learning, and Self-organization	57
4.1.1	Pulse-Density Signal Representation	57
4.1.2	Neural Dynamics	59
4.1.3	Task Processing	59
4.1.4	Learning and Self-organization	60
4.1.5	Changes in Connection Weights	60
4.2	Hebbian Rule	60

4.3	Associative Memory	63
4.3.1	Function: Memory and Recall of Pattern Information	63
4.3.2	Network Construction and Processing Dynamics	63
4.3.3	Energy Function	67
4.3.4	Use of Generalized Inverse Matrix	69
4.3.5	Weight Learning by Sequential Correlation Learning	69
4.3.6	Complex-Valued Associative Memory	70
4.3.7	Amplitude-Phase Expression of Hebbian Rule	72
4.3.8	Lightwave Neural Networks and Carrier-Frequency-Dependent Learning	73
4.4	Function Approximation	76
4.4.1	Function: Generation of Desirable Outputs for Given Inputs	76
4.4.2	Network Construction and Processing Dynamics	76
4.4.3	Learning by Steepest Descent Method	78
4.4.4	Backpropagation Learning	79
4.4.5	Learning by Complex-Valued Steepest Descent Method	81
4.4.6	Function Approximation by Use of Complex-Valued Hebbian Rule	86
4.4.7	Backpropagation Learning by Backward Propagation of Teacher Signals instead of Errors	87
4.5	Adaptive Clustering and Visualization of Multidimensional Information	90
4.5.1	Function: Vector Quantization and Visualization	90
4.5.2	Network Construction, Processing, and Self-organization	91
4.5.3	Complex-Valued Self-organizing Map: CSOM	94
4.6	Markov Random Field Estimation	94
4.6.1	Function: Signal Estimation from Neighbors	94
4.6.2	Network Construction and Processing Dynamics	95
4.6.3	Learning Correlations between Signals at a Pixel and Its Neighbors	96
4.7	Principal Component Analysis	97
4.7.1	Function: Extraction of Principal Information in Statistical Data	97
4.7.2	Network Construction and Dynamics of Task Processing and Self-organization	97
4.8	Independent Component Analysis	99

Part II Applications: How Wide Are the Application Fields?

5 Land-Surface Classification with Unevenness and Reflectance Taken into Consideration	103
5.1 Interferometric Radar	103
5.2 CMRF Model	104
5.3 CMRF Model and Complex-Valued Hebbian learning Rule	107
5.4 Construction of CSOM Image Classification System	108
5.5 Generation of Land-Surface Classification Map	110
5.6 Summary	111
6 Adaptive Radar System to Visualize Antipersonnel Plastic Landmines	113
6.1 Ground Penetrating Radars	113
6.2 Construction of CSOM Plastic Landmine Visualization System Dealing with Frequency- and Space-Domain Texture	114
6.3 Adaptive Signal Processing in CSOM	115
6.3.1 Feature Vector Extraction by Paying Attention to Frequency Domain Information	115
6.3.2 Dynamics of CSOM Classification	117
6.4 Visualization of Antipersonnel Plastic Landmines	118
6.4.1 Measurement Parameters	118
6.4.2 Results of Observation and Classification	120
6.4.3 Performance Evaluation by Visualization Rate	121
6.5 Summary	121
7 Removal of Phase Singular Points to Create Digital Elevation Map	123
7.1 Phase Unwrapping	123
7.2 Noise Reduction with a Complex-Valued Cellular Neural Network	125
7.3 System Construction	127
7.4 Dynamics of Singular-Point Reduction	128
7.5 DEM Quality and Calculation Cost	129
7.6 Summary	131
8 Lightwave Associative Memory That Memorizes and Recalls Information Depending on Optical-Carrier Frequency	133
8.1 Utilization of Wide Frequency Bandwidth in Optical Neural Networks	133
8.2 Optical-Carrier-Frequency Dependent Associative Memory: The Dynamics	136

8.2.1 Recalling Process	136
8.2.2 Memorizing Process	136
8.3 Optical Setup	137
8.4 Frequency-Dependent Learning	138
8.5 Frequency-Dependent Recall Experiment	141
8.6 Summary	142
9 Adaptive Optical-Phase Equalizer	143
9.1 System Construction	143
9.2 Optical Setup	144
9.3 Dynamics of Output Phase-Value Learning	146
9.4 Performance of Phase Equalization	147
9.5 Summary	149
10 Developmental Learning with Behavioral-Mode Tuning by Carrier-Frequency Modulation	151
10.1 Development, Context Dependence, Volition, and Developmental Learning	151
10.2 Neural Construction and Human-Bicycle Model	153
10.3 Developmental Learning in Bicycle Riding	156
10.3.1 Task 1: Ride as Long as Possible	157
10.3.2 Task 2: Ride as Far as Possible	160
10.3.3 Comparative Experiment: Direct FML in Task 2	161
10.3.4 Comparison between the Results	161
10.4 Summary	162
11 Pitch-Asynchronous Overlap-Add Waveform-Concatenation Speech Synthesis by Optimizing Phase Spectrum in Frequency Domain	163
11.1 Pitch-Synchronous and -Asynchronous Methods	163
11.1.1 Pitch Mark and Pitch-Synchronous Method	163
11.1.2 Human Senses Sound Spectrum	165
11.1.3 Problem in Simple Asynchronous Speech Synthesis	165
11.1.4 Pitch-Asynchronous Methods: Single Phase-Adjustment Method and Stepwise Phase-Adjustment Method	166
11.1.5 Convolutions and Neural Networks	167
11.2 Construction of Stepwise Phase-Adjustment System	167
11.3 Optimization of Pulse Sharpness	170
11.4 Experimental Results	172
11.5 Summary	174
Closing Remarks	177
References	179
Index	193