Contents

1.	Heuristic Introduction to the Discrete Memoryless Channel .
2.	Combinatorial Preliminaries
	2.1. Generated sequences
	2.2. Properties of the entropy function
	Remarks
3.	The Discrete Memoryless Channel
	3.1. Description of the channel
	3.2. A coding theorem
	3.3. The strong converse
	3.4. Strong converse for the binary symmetric channel 2
	3.5. The finite-state channel with state calculable by both
	sender and receiver
	3.6. The finite-state channel with state calculable only by the
	sender
	Remarks
4.	Compound Channels
•	4.1. Introduction
	4.2. The canonical channel
	4.3. A coding theorem
	4.4. Strong converse
	4.5. Compound d.m.c. with c.p.f. known only to the receiver
	or only to the sender
	4.6. Channels where the c.p.f. for each letter is stochastically
	determined
	4.7. Proof of Theorem 4.6.4
	4.8. The d.m.c. with feedback
	Remarks
5.	The Discrete Finite-Memory Channel
	5.1. The discrete channel
	5.2. The discrete finite-memory channel 55
	5.3. The coding theorem for the d.f.m.c 5
	5.4. Strong converse of the coding theorem for the d.f.m.c 58
	5.5. Rapidity of approach to C in the d.f.m.c 59
	5.6. Discussion of the d.f.m.c
	Remarks 6

X Contents

6.	Channels with Arbitrarily Varying Channel Probability	
	Functions	62
	6.1. Introduction	62
	6.2. Necessary and sufficient conditions for a positive rate	
	of transmission	62
	6.3. Remarks on the capacity of an arbitrarily varying channel	66
	6.4. The capacity C of an arbitrarily varying channel when	
	b=2	67
	6.5. Certain results for the general arbitrarily varying channel	73
	Remarks	75
7	General Discrete Channels	76
7.	7.1. Alternative description of the general discrete channel	76
	7.2. The method of maximal codes	77
	7.3. The method of maximal codes	82
	7.4. Weak converses	85
	7.5. Digression on the d.m.c.	88
	7.6. Discussion of the foregoing	
		92
	7.7. Channels without a capacity	94
	7.8. Strong converses	96
	7.9. The strong converse for the d.m.c. revisited	
8.	The Semi-Continuous Memoryless Channel	104
	8.1. Introduction	104
	8.2. A coding theorem and its strong converse	108
9.	Continuous Channels with Additive Gaussian Noise	
	9.1. A continuous memoryless channel with additive Gaussian	
	noise	109
	9.2. Message sequences within a suitable sphere	
	9.3. Message sequences on the periphery of the sphere or	
	within a shell adjacent to the boundary	114
	9.4. Another proof of Theorems 9.2.1 and 9.2.2	115
	Remarks	117
10	Mathematical Miscellanea	118
10.	10.1. Introduction	
	10.2. The asymptotic equipartition property	118
	10.3. Admissibility of an ergodic input for a discrete finite-	
	memory channel	122
11	•	. 125
11.	Fundamentals of Rate Distortion Theory	
	11.1. Introduction	124
	11.2. The approximation theorem	129
	11.3. Converse of the approximation theorem	. 120

Contents	X.

11.4. Summary of	the previous results
available .	tortion function when side information is
12.1. Separate coding 12.2. Source coding 12.3. Encoding ass	ng to span the product of two spaces
13.1. The problem 13.2. The rate dist	Rate Distortion
14.1. Description of 14.2. A coding the 14.3. Converse of	nannels <
15.1. Formulation 15.2. A coding the 15.3. Beginning of 15.4. Proof of the	st Channels 161 of the problem 161 orem 162 the proof of the strong converse 165 weak converse 167 s remarks 169