CHAPTER IV - BASIC CONSTRUCTIONS AND EXAMPLES.

1. General setting in codimension one.

- 1.1. Exc. tence of a transverse foliation.
- 1.2. Holonomy pseudogroups.
- 1.3. Appendix: One-dimensional foliations and local flows. 11

2. Topological dynamics.

- 2.1. The relations $\,\rho_{F}\,$ and $\,\rho_{D}\,$. 15
- 2.2. Leaf types; minimal sets. 17

3. Foliated bundles; examples.

- 3.1. Topological dynamics in foliated bundles. 21
- 3.2. Fibre bundles arising as foliated bundles. 26
- 3.3. Examples. 32

4. Gluing foliations together.

- 4.1. Gluing together foliations tangent to the boundary. 37
- 4.2. Gluing together foliations transverse to the boundary. 43

5. Turbulization.

- 5.1. Closed transversals. 47
- 5.2. Turbulization along a closed transversal or along a boundary component. 49

6. Codimension-one foliations on spheres.

- 6.1. Manifolds as open books. 56
- 6.2. Foliations on odd-dimensional spheres. 61

CHAPTER V - STRUCTURE OF CODIMENSION-ONE FOLIATIONS.

1. Transverse orientability.

- 1.1. Transverse orientability; one- and two-sided leaves. 68
- 1.2. Forms and linear holonomy. 71

2. Holonomy of compact leaves.

- 2.1. Local diffeomorphisms of the real line. 77
- 2.2. Germ near a compact leaf; local stability. 81

3. Saturated open sets of compact manifolds.

- 3.1. Semi-proper leaves; completion of saturated open sets. 86
- 3.2. The structure of saturated open sets. 90

4. Centre of a compact foliated manifold; global stability.

- 4.1. Structure of the centre. 94
- 4.2. The global stability theorems of Reeb and Thurston. 97

CHAPTER VI - EXCEPTIONAL MINIMAL SETS OF COMPACT FOLIATED MANIFOLDS; A THEOREM OF SACKSTEDER.

- 1. Resilient leaves. 103
- 2. The theorem of Denjoy-Sacksteder. 105
- 3. Sacksteder's theorem. 109
- 4. The theorem of Schwartz. 116

CHAPTER VII - ONE SIDED HOLONOMY; VANISHING CYCLES AND CLOSED TRANSVERSALS.

1. Preliminaries on one-sided holonomy and vanishing cycles. 119

2. Transverse foliations of D^2	2.	$D^2 \times IR$
-----------------------------------	----	-----------------

- 2.1. Foliations with singularities on the disk. 129
- 2.2. One-sided holonomy in transverse foliations. 137
- 3. Existence of one-sided holonomy and vanishing cycles. 143

CHAPTER VIII - FOLIATIONS WITHOUT HOLONOMY.

- 1. Closed 1-forms without singularities.
 - 1.1. Closed 1-forms and foliations obtained by an equivariant fibration. 151
 - 1.2. The theorem of Tischler. 162
- 2. Foliations without holonomy versus equivariant fibrations.
 - 2.1. Trivialization and global unwrapping. 166
 - 2.2. Trivializing foliations without holonomy. 174
- 3. Holonomy representation and cohomology direction.
 - 3.1. Hölder's theorem; fixed point free subgroups of Homeo (IR). 186
 - 3.2. Foliations without holonomy and closed 1-forms. 193

CHAPTER IX - GROWTH.

- 1. Growth of groups, homogeneous spaces and riemannian manifolds.
 - 1.1. Growth type of functions. 205
 - 1.2. Growth of finitely generated groups and homogeneous spaces. 208
 - 1.3. Growth of riemannian manifolds; application to covering spaces. 216

2. Growth of leaves in foliations on compact manifolds.

- 2.1. Growth of leaves in topological foliations. 224
- 2.2. Growth of leaves in differentiable foliations. 232

CHAPTER X - HOLONOMY INVARIANT MEASURES.

- 1. Invariant measures for subgroups of $Homeo(\mathbb{R})$ or $Homeo(\mathbb{S}^1)$.
 - 1.1. Abelianization of subgroups of $Homeo_+(IR)$ admitting an invariant measure. 241
 - 1.2. Diffuse measures versus Lebesgue measure; invariant measures on \mathbf{S}^1 . 250
- 2. Foliations with holonomy invariant measure.
 - 2.1. Fundamentals on holonomy invariant measures. 258
 - 2.2. Averaging sequences and holonomy invariant measures. 265
 - 2.3. Holonomy invariant measures for foliations of codimension one. 271

Literature 284

Glossary of notations 289

Index 291