Contents

Preface	xvii	
Introduction		xix

1	Methane 1
1.1	Application 1
1.2	Conventional Production of Methane 1
1.3	Carbon Dioxide as Feedstock 2
1.4	Conversion of Carbon Dioxide into Methane 4
1.4.1	The Chemical Sabatier 4
1.4.2	The Biochemical Sabatier 5
1.5	Biochemical Pathway Design 6
1.6	Integration of Hydrogen Production and the Biochemical Methanation 8
1.6.1	Conversion of Carbon Dioxide into Methane with Integrated Production of Hydrogen 8
1.6.2	Mechanisms at the Cathode for the Uptake of Reduction Equivalents 10
1.6.3	R&D with Integrated Hydrogen Production and Biochemical Methanation and IET 11
1.6.4	Boundary Conditions for Potential Commercial Application 12
1.7	Process Development for the "Biochemical Sabatier" without Integrated Water Electrolysis 13
1.8	Commercial Application of Fermentative Methane Production 14
	References 16
2	Ethanol Ex Glucose 20
2.1	Application 20
2.2	Production of Ethanol 21
2.3	Pathway Design 21
2.3.1	Glycolysis as Natural Fermentation Pathway 21
2.3.2	S. cerevisiae as Fermentation Host 24
2.3.3	Generation of Carbon Dioxide as By-Product 25
2.3.4	Zymomonas mobilis as Fermentation Host 25
2.3.5	Escherichia coli as Fermentation Host 27
2.3.6	Digression: E. coli as Host for Acetaldehyde and Hydrogen 28
2.3.7	Ethanol Production in Cell-Free Systems 29

2.4	Process Development 29
2.4.1	Technology Scope 29
2.4.2	Dry Milling Process 30
2.4.3	Sterile or Non-sterile Fermentation 31
2.5	Alternative Raw Material Source 32
2.5.1	Second-Generation Ethanol Technology 32
2.5.2	Third-Generation Ethanol Technology 38
2.6	Industrial Production and Capacity 38
2.6.1	Ethanol Production First Generation 38
2.6.2	Ethanol Production Second Generation 39
2.6.3	The Project "LIBERTY" of POET and DSM 40
2.6.4	The Ethanol Second Generation Activities of Dupont 41
2.6.5	The "Sunliquid" Technology of Clariant 41
	References 42
3	Acetate and Ethanol Ex CO/H ₂ 49
3.1	The Wood-Ljungdahl Pathway 49
3.1.1	Methyl-Branch and CO-Branch 49
3.1.2	ATP Generation via Generation of Ion Gradient 49
3.1.3	Taxonomy of Acetogenic Bacteria 51
3.1.4	Hydrogen as Energy Source 52
3.1.5	Carbon Monoxide as Energy Source 54
3.2	Formation of Acetate in A. woodii Based on Carbon Dioxide and Hydrogen 55
3.3	Formation of Acetate in A. woodii Based on Carbon Monoxide 56
3.4	Formation of Ethanol in A. woodii Based on Carbon Dioxide and Hydrogen
	without AOR 58
3.5	Formation of Ethanol in A. woodii Based on Carbon Dioxide and Hydrogen
	with AOR 60
3.6	Formation of Ethanol in C. woodii Based on Carbon Monoxide 62
3.7	Formation of Acetate in C. autoethanogenum Based on Carbon Dioxide and
	Hydrogen 63
3.8	Formation of Ethanol in C. autoethanogenum Based on Carbon Dioxide and
	Hydrogen 63
3.9	Industrial Fermentation and Capacity 69
	References 70
4	Lactic Acid 74
4.1	Application 74
4.2	Chemical Synthesis of Lactic Acid 75
4.3	Pathway Design 76
4.3.1	Lactic Acid Production with Homofermentative Lactobacillus Strains 76
4.3.2	Lactic Acid Production With Heterofermentative Lactobacillus Strains 78
4.3.3	Lactic Acid Production with Lactobacillus paracasei 80
4.3.4	D-lactate Production with E. coli 81
4.4	Process Development 82
4.4.1	pH Management and Calcium Sulfate as By-product 82

4.4.2	pH Management and Ammonium Sulfate as By-product 84
4.4.3	Eukaryotic Host as Biocatalyst with Enhanced Acid Tolerance 85
4.4.4	pH Management with Co-production 85
4.4.5	Overcome Neutralization by Adjusted Product Concept 86
4.4.6	In Situ Recovery During the Fermentation 86
4.4.7	Reactor Design and Biocatalyst Immobilization 87
4.5	Evaluation of Alternative Feedstocks 87
4.5.1	Lignocellulosic Biomass as Carbon and Energy Source 87
4.5.2	D-lactate Production with <i>L. delbrueckii</i> with Rice Straw Hydrolysate 88
4.5.3	Lactic Acid Based on Methane 89
4.5.4	Digression: Lactic Acid Based on Carbon Dioxide and Light in
	Synechocystis sp. 89
4.6	Production Cost and Market Price 91
4.7	Industrial Application and Capacity 91
4.7.1	Corbion 91
4.7.2	Cargill/NatureWorks 92
4.7.3	Galactic/Anhui COFCO Biochemical 92
	References 92
5	Alanine 97
5.1	Application 97
5.2	Chemical Production of L-alanine 97
5.3	Pathway Design 98
5.4	Metabolic Engineering 101
5.4.1	Initial Fermentative Production of L-alanine in Bacillus subtilis 101
5.4.2	Fermentative Production of L-alanine in Escherichia coli 101
5.4.3	Initial Fermentative Production of L-alanine in Pediococcus acidilactici 102
5.4.4	Fermentative Production of L-alanine in <i>V. natriegens</i> in a High Cell Density
E 1 E	Fermentation 102
5.4.5 5.4.6	Fermentative Production of D-alanine with <i>Corynebacterium fascians</i> 103 Biocatalytic (Whole Cell) Production of L-alanine Based on Fumaric Acid 103
5.4.7	Biocatalytic (Whole Cell) Production of L-alanine Based on Fumaric Acid 103 Biocatalytic Production of L-alanine 104
5.5	Industrial Production and Application 105
J.J	References 106
4	7 Uhrdungamaniania Asid 100
6	3-Hydroxypropionic Acid 109
6.1	Application 109 Chamical Synthesis 110
6.2 6.3	Chemical Synthesis 110 Pathway Design 111
	•
6.3.1 6.3.2	Synthesis Based on Glucose via Malonyl-CoA 111 Synthesis Based on Glucose via Acetate and Malonyl-CoA 112
6.3.3	Synthesis Based on Glucose via α-Alanine and β-Alanine 113 Synthesis Based on Glycerol 114
6.3.4	·
6.3.5	Digression: Synthesis of Acrylic Acid Based on Glycerol 116 Industrial Application 116
6.4	References 117
	References 11/

7	1,3-Propanediol 119
7.1	Application 119
7.2	Alternative Production of 1,3-Propanediol 119
7.3	Pathway Design Toward 1,3-Propanediol 120
7.3.1	Glucose as Carbon and Energy Source 120
7.3.2	Glycerol as Carbon and Energy Source 123
7.3.3	Glucose as Carbon Source and Provision of Reduction Equivalents via Electrical
	Power 126
7.3.4	Glycerol as Carbon Source and Provision of Reduction Equivalents via Electrical
	Power 127
7.4	Metabolic Engineering 128
7.4.1	Commercial E. coli Strain with Glucose as Carbon Source 128
7.4.2	Glycerol as Carbon Source with Carbon Dioxide as By-product (Klebsiella
	pneumoniae) 129
7.4.3	Glycerol as Carbon and Energy Source (Vibrio natriegens) 131
7.5	Process Development 132
7.6	Industrial Application and Capacity 133
	References 134
8	Butanol 137
8.1	Application 137
8.2	Conventional Production of Butanol 138
8.2.1	ABE Fermentation as First Commercial Butanol Technology 138
8.2.2	Hydroformylation of Propylene Toward oxo C4 Alcohols 139
8.2.3	Butanol via the Dimerization of Ethanol 140
8.2.4	Butanol via Catalytic Alkane Hydroxylation 140
8.3	Pathway Design Based on Glucose 141
8.3.1	Formation of Acetyl-CoA via the Pyruvate Dehydrogenase Complex 141
8.3.2	Formation of Acetyl-CoA via the Pyruvate Dehydrogenase Bypass 145
8.4	Pathway Design Based on Carbon Dioxide, Carbon Monoxide and
	Hydrogen 146
8.4.1	Syngas Fermentation with Carbon Monoxide and Hydrogen 146
8.4.2	Syngas Fermentation with Carbon Dioxide, Carbon Monoxide and
	Hydrogen 147
8.5	Process Development for Fermentative Butanol 151
8.5.1	The Conventional ABE Fermentation in the 20th Century 151
8.5.2	Continuous Production Mode 153
8.5.3	In Situ Recovery Attempts and Butanol Isolation 154
8.5.4	Selection of Alternative Hosts 158
8.5.5	High Cell Density Fermentation 158
8.5.6	Digression: Derivatization of Butanol 159
8.6	Alternative Raw Material Sources 160
8.6.1	Use of Lignocellulosic Biomass as Second-Generation Feedstock 160
8.6.2	Digression: Celtic Renewables with Pot Ale as Feedstock 161
8.7	Industrial Application 161
071	Formantative Dutanal Draduction with Conventional ADE Formantation 161

8.7.2	Butanol Production Based on Sugarcane in Brazil 163 References 163
9	Isobutanol 170
9.1	Application 170
9.2	Conventional Synthesis of Isobutanol 171
9.3	Metabolic Engineering 172
9.3.1	Isobutanol via 2-Oxoisovalerate in <i>Escherichia coli</i> with Balanced Reduction
7.5.1	Equivalents 172
9.3.2	Carbon Yield with Balanced Reduction Equivalents 174
9.3.3	Isobutanol via 2-Oxoisovalerate in <i>E. coli</i> Without Direct Balance of Reduction
	Equivalents 175
9.3.4	Isobutanol via 2-oxoisovalerate in Saccharomyces cerevisiae Without Balanced
	Reduction Equivalents 178
9.3.5	Isobutanol Based on Glycine and Butyryl-CoA 179
9.3.6	Isobutanol Based on CO and CO ₂ 180
9.4	Process Development 182
9.4.1	Strain Adaptation to Overcome Product Toxicity 182
9.4.2	In Situ Recovery of Isobutanol to Raise Productivity 182
9.4.3	Recovery of Value Components into By-products 184
9.4.4	Cascade Biocatalysis to Overcome Product Toxicity 184
9.5	Industrial Application 187
	References 188
10	Isobutene 191
10.1	Application 191
10.2	Conventional Synthesis 191
10.3	Pathway Design Toward Isobutene 192
10.3.1	Isobutene via 2-oxoisovalerate and 2-hydroxyisovalerate 193
10.3.2	Isobutene via 2-oxoisovalerate and Isobutanol 194
10.3.3	Isobutene via 2-oxoisovalerate via Isovalerate 196
10.3.4	Isobutene via 2-oxoisocaproate and Isovalerate 198
10.3.5	Isobutene via acetoacetyl-CoA and 3-methylcrotonate 199
10.3.6	Isobutene via acetoacetyl-CoA and 3-Hydroxyisovaleryl-CoA 200
10.3.7	Isobutene via Acetoacetyl-CoA and Acetone and 3-hydroxyisovalerate 201
10.4	Carbon Yield and Carbon Footprint 202
10.5	Industrial Fermentation and Capacity 202
	References 204
11	1,4-Butanediol <i>206</i>
11.1	Application 206
11.2	Conventional Synthesis of 1,4-Butanediol 207
11.3	Pathway Design 208
11.3.1	Oxidative Citric Acid Cycle Until Succinyl-CoA 208
11.3.2	Reduction Equivalents and Oxygen Demand 211
11.3.3	Theoretical and Practically Achieved Yield 212

1	
1	Contents
и	COMEMI

11.3.4 11.4 11.5 11.6 11.6.1 11.6.2 11.7	Thermodynamically Challenging Reduction of Carboxylic Acid Functions 213 Process Design for Fermentative 1,4-Butanediol Based on Glucose 213 1,4-Butanediol Derived by Chemical Hydrogenation of Succinic Acid 215 Alternative Carbon and Energy Source for Fermentation 216 p-Xylose as Carbon Source via 2,5-Dioxopentanoate 216 p-Xylose as Carbon Source via Xylonic Acid 217 Industrial Application and Capacity 218 References 219
12	Succinic Acid 222
12.1	Application 222
12.2	Conventional Synthesis of Succinic Acid 223
12.3	Pathway Design and Metabolic Engineering 224
12.3.1	Pathway via Glycolysis, PEP Carboxylation, and Oxidative Citric Acid
12.3.2	Cycle 224 Pathway via Glycolysis, PEP Carboxylation, and Reductive Citric Acid Cycle 225
12.3.3	Pathway via Glycolysis, PEP Carboxylation, and Reductive Citric Acid Cycle Combined with PPP 227
12.3.4	Alternative Pathway via Glycolysis and Glyoxylate Cycle 229
12.3.5	Summary of TMY Pending on Pathway Design 230
12.3.6	Case Study: Combination of Reductive Citric Acid Cycle and Pentose Phosphate Pathway 231
12.3.7	Glycerol as Carbon and Energy Source 232
12.3.8	Oil Palm Frond Juice as Alternative Raw Material Source 235
12.3.9	Succinic Acid Based on Glucose Combined with Microbial
	Electrosynthesis 235
12.4	Production Host 236
12.4.1	Hosts Applied for Development of an Industrial Fermentation Process 236
12.4.2	Best Published Results on Technology Performance 238
12.5	Reactor Concepts 239
12.6	Downstream Processing 239
12.7	Industrial Capacity and Performance 241
	References 243
13	Itaconic Acid 248
13.1	Application 248
13.2	Metabolic Engineering 248
13.2.1	Citrate Conversion via cis-Aconitate Toward Itaconate in Aspergillus terreus
	(A. terreus) 248
13.2.2	Pathway Design: Citrate Conversion Toward trans-Itaconate in Ustilago maydis (U. maydis) 250
13.3	Process Design 251
13.3.1	Fermentation with A. terreus as Host 251
13.3.2	U. maydis as Alternative Production Host 252

13.3.3	Pseudomonas putida as Production Host with Pretreated Lignin as Feedstock 253
13.3.4	A. terreus as Production Host with Xylose as Feedstock 253
13.3.5	Overview of Achieved Fermentation Performance Data 254
13.3.6	Downstream Processing 254
13.4	Industrial Application and Capacity 255
	References 255
14	Glutamic Acid 258
14.1	Application 258
14.2	Native Biochemical Pathway 259
14.2.1	Glutamic Acid via Reductive Amination of α-Ketoglutarate 259
14.2.2	Glutamic Acid via Reductive Amination of α-Ketoglutarate 262
14.3	Metabolic Engineering 263
14.3.1	Finetuning of the Native Pathway 263
14.3.2	Coproduction of Glutamate and 1,3-Propanediol 263
14.4	Process Development and Industrial Application 264
14.4.1	Adaption to a Carbon Source 2nd Generation 265
14.4.2	Industrial Process Performance 265
	References 266
15	Isoprene 269
15.1	Application 269
15.2	Chemical Synthesis 269
15.3	Pathway Design 270
15.3.1	Terpenes Derived from the Unique C5 Building Block IPP/DMAPP 270
15.3.2	Mevalonate (MVA) Pathway Without Pyruvate-Dehydrogenase Bypass 271
15.3.3	Mevalonate (MVA) Pathway with Pyruvate-Dehydrogenase Bypass 272
15.3.4	Mevalonate (MVA) Pathways Pursued in Archaea 276
15.3.5	Mevalonate (MVA) Pathway with Reduced ATP Consumption 277
15.3.6	The Deoxy-Xylulose-Phosphate (DXP) Pathway 279
15.4	Metabolic Engineering Toward Isoprene 280
15.4.1	Isoprene Production by a Metabolically Engineered E. coli Strain Under Aerobic
	Conditions 281
15.4.2	Coproduction of Isoprene and 1,3-Propanediol with Redox Recycling 283
15.4.3	Isoprene via a Biocatalytic Conversion of Mevalonate 283
15.4.4	Mevalonate (MVA) Pathway with Reduced ATP Demand 284
15.4.5	Isoprene via Mixed MVA and DXP Pathway in E. coli 284
15.4.6	Isoprene via MVA Pathway in Clostridium ljungdahlii with CO/H ₂ and Fructose
	as Feedstock 285
15.5	Metabolic Engineering Toward Mevalonate 286
15.5.1	Mevalonate via an Engineered MVA Pathway in S. cerevisiae 286
15.5.2	Mixing of Cell-Free E. coli Extracts to Derive Mevalonate 288
15.5.3	Isoprene via Mevalonate in a Two-Step Process 289
15.5.4	Isoprene via Chemical Decarboxylation of Mevalonolactone 290
15.5.5	Overview of Reported Fermentation Performance Data 290

xii	Contents	
	15.6	Downstream Processing 292
	15.7	Industrial Application and Capacity 292
		References 293
	16	Pentamethylenediamine 297
	16.1	Application 297
	16.2	Chemical Synthesis 298
	16.3	Pathway Design 298
	16.3.1	Glucose as Feedstock via Lysine Decarboxylation 298
	16.3.2	Methanol as Feedstock via Lysine Decarboxylation 299
	16.3.3	Pathway Design: The Ribulose Monophosphate Pathway in <i>Bacillus</i> methanolicus 300
	16.3.4	Kinetics and Thermodynamics of the Methanol Dehydrogenase 304
	16.4	Metabolic Engineering 305
	16.4.1	Glucose as Carbon and Energy Source with C. glutamicum as Host 305
	16.4.2	Xylose as Carbon and Energy Source with C. glutamicum as Host 309
	16.4.3	Glucose as Carbon and Energy Source with E. coli as Host 309
	16.4.4	Whole-Cell Biocatalysis as Production Technology 310
	16.4.5	Methanol as Carbon and Energy Source with <i>Bacillus methanolicus</i> as Host 312
	16.5	Downstream Processing 313
	16.6	Industrial Application 313 References 314
	17	Lysine 319
	17.1	Application 319
	17.2	Chemical Production 320
	17.3	Metabolic Pathway via DAP and Metabolic Engineering 320
	17.3.1	Pathway via Aspartate and Diaminopimelate (DAP) 320
	17.3.2	Theoretical Maximum Molar Yield of the DAP Pathway via Succinylase 32
	17.3.3	Achieved Carbon Yield of the Pathway via Aspartate and L-THP 328
	17.3.4	Engineering of the DAP Pathway via Aspartate and L-THF 328
	17.4	Metabolic Pathway via α-Aminoadipate in Fungi 329
	17.5	Secretion of Lysine 330
	17.6	Process Development 330
	17.6.1	Aerobic Process and Oxygen Demand 330
	17.6.2	Higher Flexibility of Carbon and Energy Source 331
	17.6.3	Product Isolation and Purification 331
	17.7	Industrial Application 333
		References 334
	18	Citric Acid 339
	18.1	Application 339
	18.2	Chemical Production and Natural Extraction 339
	18.3	Biochemical Pathway 340
	18.3.1	Provisioning of the Two Main Precursors and Pathway Split on Two
		Compartments 340

18.3.2 18.4 18.4.1 18.4.2 18.4.3 18.4.4 18.4.5 18.5	Surplus or Reduction Equivalents and Oxygen Demand 341 Process Development 343 Host Selection 343 Feedstock 343 Metal Ions in the Broth 344 Type of Fermentation Technology 345 Product Isolation 345 Industrial Production 347 References 348	
19	Adipic Acid 350	
19.1	Application 350	
19.2	Chemical Production of Adipic Acid 350	
19.3	Metabolic Engineering for Fermentation 351	
19.3.1	Adipic Acid via the Reverse Adipate Degradation Pathway 352	
19.3.2	cis, cis-Muconic Acid Ex Glucose via the Partial Shikimic Acid Pathway	355
19.3.3	cis, cis-Muconic Acid via the Partial Shikimic Acid Pathway in Specific Organelles 357	
19.3.4	Adipic Acid Ex Glucose via the Partial Shikimic Acid Pathway 357	
19.3.5	Coculturing of Two Hosts with 3-Dehydroshikimate as Handover 358	
19.3.6	cis, cis-Muconic Acid Derived from a Lignin Fraction via "Biological Funneling" 360	
19.4	Digression: Metabolic Engineering for C6+ Diacids 361	
19.4.1	Long-Chain Carboxylic Acids via Biotransformation 361	
19.4.2	Generation of C6+ Diacids with <i>Candida tropicalis</i> Based on Waste Streams 362	
19.5	Process Development 363	
19.6	Industrial Application and Capacity 364	
	References 364	
20	Hexamethylenediamine 368	
20.1	Application 368	
20.2	Chemical Production of HMD 369	
20.3	Metabolic Engineering for Fermentation Technology 370	
20.3.1	Fermentation Based on Glucose via Adipyl-CoA 370	
20.3.2	Fermentation Based on Glucose via 6-Hydroxyhexanoate 374	
20.3.3	Fermentation Based on Glucose via 2-Amino-6-Oxopimelate 375	
20.3.4	Fermentation Based on Glucose via α-Ketopimelic Acid 376	
20.3.5	Fermentation Based on Glucose via 6-amino-2-Hydroxy Hexanoic Acid	377
20.4	Biocatalytic Routes Towards HMD 378	
20.4.1	Biocatalytic Conversion of ADA 378	
20.4.2	Digression: Biocatalytic Synthesis of ADN via C6 Dialdehyde 379	
20.5	Process Design 380	
20.6	Commercial Application 382 References 383	

xiv Contents	
---------------------	--

21	Caprolactam and 6-Aminocaproic Acid 386
21.1	Application 386
21.2	Chemical Production of CPL 386
21.3	Metabolic Engineering for Fermentation Technology via Adipyl-CoA 387
21.3.1	Fermentation Toward CPL Based on Glucose via Adipyl-CoA 387
21.3.2	Pathway Engineering Toward 6-ACA or CPL: The Cyclization 389
21.3.3	Fermentation Toward 6-ACA Based on Glucose via α-Ketopimelic Acid 390
21.3.4	Fermentation Toward CPL Based on Glucose via α-Ketopimelic Acid 392
21.3.5	Fermentative Production of ADA and Chemical Conversion Toward CPL 392
21.4	Industrial Application 393
	References 394
22	Anthranilic Acid and Aniline 397
22.1	Application 397
22.2	Pathway Design 399
22.2.1	Shikimate Pathway via Chorismate Toward Anthranilate and Aniline 399
22.2.2	Tryptophan Degradation Pathway Toward Anthranilate 403
22.3	Metabolic Engineering for Anthranilate as Fermentation Product 403
22.3.1	Anthranilate in Bacillus subtilis 403
22.3.2	Anthranilate in E. coli 404
22.3.3	Anthranilate in Pseudomonas putida 405
22.3.4	Anthranilate in S. cerevisiae 406
22.4	Derivatives of Anthranilate as Fermentation Product 407
22.4.1	Metabolic Engineering: N-Methylanthranilate in C. glutamicum 407
22.4.2	Methyl Anthranilate in C. glutamicum 407
22.4.3	Methylanthranilate in S. cerevisiae 409
22.5	Alternative Fermentation Precursors for Aniline 409
22.5.1	meta-Aminobenzoate (3-Aminobenzoate) via Dehydroshikimate 409
22.5.2	Para-Aminobenzoic Acid via Shikimate 410
22.6	Process Development with Focus on Product Isolation 411
22.6.1	Anthranilic Acid with S. cerevisiae as Host and In Situ-Product Recovery 411
22.6.2	Anthranilic Acid with C. glutamicum as Host and In Situ-Product
22.6.3	Recovery 413 Anthranilic Acid Isolation via Organic Solvent Extraction After the
22.0.3	Fermentation 413
22.7	Industrial Fermentation 414
22.1	References 414
23	Farnesene 418
23.1	Application 418
23.2	Chemical Production 420
	Biochemical Pathway 420
23.3.1	Mevalonate Pathway Toward IPP/DMAPP and β-Farnesene via Oxidative
	Glycolysis 421
23.3.2	Mevalonate Pathway Toward IPP/DMAPP and β-Farnesene via Non-oxidative
	Glycolysis 424

23.3.3	DXP Pathway Toward IPP/DMAPP and β-Farnesene 426
23.4	Metabolic Engineering 428
23.4.1	Recombinant Reconstruction of Complete Pathways in Non-native Hosts 428
23.4.2	Formation of Acetoacetyl-CoA via Malonyl-CoA 429
23.4.3	β -Farnesene with Plant Oil as Feedstocks with Dual MVA Pathway in Yarrowia
	lipolytica 431
23.4.4	HMG-CoA Reductase with Changed Cofactor 432
23.4.5	Technology Development in Cupriavidus necator to Access Lithoautotrophic
	Feedstocks 432
23.4.6	Digression: α-Farnesene with Fused Pathway Enzymes 433
23.5	Process Design with Second Liquid Phase 434
23.6	Industrial Application 437
	References 439
	Index 445