

Contents

A Service-Oriented Approach for Holonic Manufacturing Control and Beyond.....	1
<i>Jan Van Belle, Johan Philips, Osman Ali, Bart Saint Germain, Hendrik Van Brussel, and Paul Valckenaers</i>	
1 Introduction	1
2 Holonic Manufacturing Execution System.....	2
3 Application Domains	5
3.1 Manufacturing.....	6
3.1.1 Car Paint Shop	6
3.1.2 Photographic Foil Facility.....	7
3.1.3 Machine Tool Shop.....	8
3.1.4 Heat Treatment Facility	9
3.2 Open-Air Engineering.....	10
3.3 Robotics	11
3.4 Logistics.....	13
3.4.1 Chain Conveyor System	13
3.4.2 Cross-Docking Facility	14
4 Supporting Services	15
5 Conclusions	17
References	18
 Service Oriented Control Framework for a Holonic System Characterized by a Guided Flow of Entities.....	 21
<i>Theodor Borangiu, Silviu Raileanu, Octavian Stocklosa, Christian Tahan, Thierry Berger, and Damien Trentesaux</i>	
1 Introduction	21
2 The System Characterized by a Guided Flow.....	23
2.1 The Concept and Characterization of Entities	23
Active entity.....	23
Non-active entities	23
Generalized active entity (GAE).....	24
2.2 Control Architecture for an Active Entity System	25
3 Structure of the Holonic Control System	26
3.1 Static and Dynamic Models of the Composing Holons	27
3.2 Static Structure.....	28
Coordinator Holon (CH)	28
Resource Holon (RH)	28
System Knowledge Holon (SKH)	28

3.3	Dynamic Structure	29
	Conduct Holon (COH).....	29
	Mobility Holon (MH)	29
	Services to be Obtained Holon (SOH).....	29
	Object Service Receiving Holon (OSRH)	29
	Flow Holon (FH)	29
3.4	Aggregation Process and Lifecycle of a FH	29
4	Behavioural Model	30
4.1	Planning Process	31
4.2	Resource Scheduling.....	31
4.3	Service Reception	31
5	Realization	32
6	Conclusion	33
	References	33

The Augmentation Concept: How to Make a Product “Active” during Its Life Cycle	35
---	-----------

Yves Sallez

1	Introduction	35
2	The Concept of "Active" Product	36
2.1	Improved Performance of the Pair "Active Products - Support System"	36
2.2	Proposed Model	38
	Functional view	38
	Evolutionary view.....	39
3	Application of the Model in a Manufacturing Context	40
3.1	Product Augmentation in a Manufacturing Phase	40
3.2	Real Implementation.....	41
3.3	Experimental Results	43
4	Application of Our Model in a Condition-Based Maintenance Context.....	43
4.1	Product Augmentation in Use Phase.....	43
4.2	Real Implementation.....	45
4.3	Results	46
5	Conclusion and Prospects	46
	References	47

Engineering Hierarchical Complex Systems: An Agent-Based Approach: The Case of Flexible Manufacturing Systems	49
--	-----------

Gildas Morvan, Daniel Dupont, Jean-Baptiste Soyez, and Rochdi Merzouki

1	Introduction	49
2	Two Trends in MABS Research.....	50
2.1	Multi-level Modelling.....	50
2.2	The Influences → Reaction Model	51
3	A Generic Meta-model for Multi-level MABS.....	52
3.1	Specification of the Levels and Their Interactions	52
3.2	Agent Population and Environments	53

3.3 Action Modelling	53
4 Engineering Hierarchical Complex Systems with IRM4MLS	54
4.1 The Emergence/Constraint Paradigm	54
4.2 IRM4MLS Implementation	54
4.3 Conception of Hierarchical Systems	55
4.4 Case Study: AGV Deadlocks in Gradient Field-Based FMS	56
5 Conclusion	57
References	58
HAPBA – A Holonic Adaptive Plan-Based Architecture	61
<i>Doru Panescu and Carlos Pascal</i>	
1 Introduction	61
2 Petri Nets Modelling of Holonic Systems; Some Main Planning Issues	62
3 The Need of Holonic Centralized Components – Staff Holons	67
4 Experimental Results and Conclusions	70
References	74
Integrating Intelligent Robot Services in Holonic Manufacturing	75
<i>Florin Daniel Anton, Theodor Borangiu, Silvia Anton, Marco Ceccarelli, and Giuseppe Carbone</i>	
1 Introduction	75
2 Decomposing Orders in Operations	77
3 Transforming Operations in Programs	79
4 High Availability Services	81
5 Conclusion	83
References	87
Key Factors for Information Dissemination on Communicating Products and Fixed Databases	89
<i>Sylvain Kubler, William Derigent, André Thomas, and Éric Rondeau</i>	
1 Introduction	89
2 The System Characterized by a Guided Flow	91
2.1 General Data Distribution Framework	91
2.2 Distributed Databases through Literature	91
3 Case Study Presentation	93
3.1 Reference Distribution Pattern	93
3.2 Adaptation of the Logistic Process	93
4 DiPA and CoPA Architecture Modelling	95
4.1 Architecture	95
4.2 Estimated "Round Trip Times" via OPNET	95
4.3 Petri Nets: DiPA and CoPA Architectures	96
5 Results and Analysis	98
5.1 Simulation and Results	98
5.2 Key Factor Identification	99
6 Conclusion	101
References	102

A Load Balancing Algorithm for Multi-agent Systems.....	103
<i>Iulia Ștefan, George Moiș, Szilárd Enyedi, and Liviu Miclea</i>	
1 Introduction	103
1.1 Generalities	103
1.2 Load Balancing	104
1.3 Agent Society	105
2 Proposed Solution.....	106
3 Skill Classes Awareness	108
4 The Load Balancing Algorithm	109
5 Task Agents Transfer.....	111
6 Distributed Security	112
7 Conclusions and Future Work	112
References	113
A Holonic Approach to Myopic Behavior Correction for the Allocation Process in Flexible-Job Shops Using Recursiveness	115
<i>Gabriel Zambrano Rey, Nassima Aissani, Abdelghani Bekrar, and Damien Trentesaux</i>	
1 Introduction	115
2 Myopic Behaviour in Holonic Manufacturing Systems.....	117
2.1 Recursiveness in HMS	118
3 The Approach	118
3.1 Modelling Holons	119
3.2 Modelling Resources	120
3.3 The Allocation Method	121
3.4 Reactivity to Uncertain Conditions.....	122
4 Holons and Their Agent-Based Implementation	123
5 FJSP Test Case and Lower Bound Calculation	123
5.1 Mixed-Integer Linear Program (MILP) for FMS.....	123
6 Results	125
7 Conclusions and Future Work	126
References	127
Integrating e-IMS Platform via Interoperability within Collaborative Enterprises	129
<i>Aurelian Mihai Stanescu, Mihnea Alexandru Moisescu, Ioan Stefan Sacala, and George Burlacu</i>	
1 Introduction	129
2 Key Requirement towards the Development of a Methodology for Future Enterprise System of Systems	130
3 From Virtual Enterprise towards Future Enterprise.....	134
4 Case Study Modules Operator for FInES Supply Chain.....	138
5 Conclusions	141
References	142

Dynamic Bayesian Network for Decision Aided Disassembly Planning	143
<i>Luminita Duta and Sidali Ad Douche</i>	
1 Introduction	143
2 State of the Art.....	144
3 Dynamic Bayesian Networks.....	145
4 Proposed Model.....	147
4.1 Notations and Assumptions	147
5 Validation and Results	148
5.1 Case Study	148
5.2 BayesiaLab	150
5.3 Implementation	151
6 Conclusions	153
References	154
 Service Oriented Architecture for Holonic Isoarchic and Multicriteria Control.....	155
<i>Yves Dubromelle, Fouzia Ounnar, and Patrick Pujo</i>	
1 Introduction	155
2 Main Characteristics of PROSIS Approach.....	157
2.1 Definition of Isoarchic System	157
2.2 Deployment of SOA in Isoarchic System.....	158
2.3 ACE as Support System for Isoarchic SOA.....	159
2.4 Presentation of SOA in PROSIS	161
3 Services Provided by ACE	162
3.1 Hosting Service.....	162
3.2 Decision Support Service.....	164
4 Conclusion	167
References	167
 Viable System Model Approach for Holonic Product Driven Manufacturing Systems.....	169
<i>Carlos Herrera, Sana Belmokhtar Berraf, and André Thomas</i>	
1 Introduction	169
2 VSM for Holonic Product-Driven Manufacturing Systems.....	170
2.1 Implementation	171
2.2 Coordination	171
2.3 Control	171
2.4 Intelligence	171
2.5 Policy	172
3 Application to MPC Systems.....	175
3.1 Part I: Design/Virtual.....	177
3.2 Part II: Design/Physical	177
3.3 Part III: Implementation/Physical	177
3.4 Part IV: Implementation/Virtual	178

4 Discussion.....	178
5 Conclusion.....	180
References	180
Speech to Head Gesture Mapping in Multimodal Human-Robot Interaction	183
<i>Amir Aly and Adriana Tapus</i>	
1 Introduction	183
2 Prosodic Features Extraction	184
3 Head Pose Estimation	185
4 Speech and Head Gesture Segmentation	188
4.1 Speech Temporal Segmentation	189
4.2 Gestures Temporal Segmentation	190
5 Speech to Head Gesture Coupling	191
6 Experimental Results	193
7 Conclusions	195
References	195
Myopia of Service Oriented Manufacturing Systems: Benefits of Data Centralization with a Discrete-Event Observer	197
<i>Olivier Cardin and Pierre Castagna</i>	
1 Introduction	197
2 Service Oriented Manufacturing Systems	198
2.1 Service Orientation in the Context of Distributed Manufacturing Systems	198
2.2 Service Oriented Manufacturing System Example	199
3 HMS and SOA.....	200
3.1 PROSA Modelling.....	200
3.2 PROSA in SOA	201
4 Centralizing Data, Not Decisions	202
4.1 Gathering an Up-to-Date State of a HMS	202
4.2 Integration in HMS	203
5 Applications	204
5.1 Application to Decision DG2.....	204
5.2 Application to Decision DL1	205
Problem Definition	206
Scenarios.....	207
Results and Discussion	207
6 Conclusion and Future Works	209
References	209
A Multi-agent Model for Job-Shop Scheduling	211
<i>Gabriel Neagu</i>	
1 Introduction	211
2 Building Blocks of the Multi-agent Solution.....	212
2.1 MACOR - a Multi-agent Co-ordination Mechanism	212

2.2 The DCPN Formalism	214
3 Generic Prototyping in Manufacturing Control	214
3.1 Methodological Framework	214
3.2 DSMC_A Generic Prototype	216
4 Job-Shop Scheduling Particular Prototype	217
4.1 Design Specification of the Control Model	217
4.2 A Case Study: The Job Object Class	219
5 Towards a Service Oriented Implementation	222
5.1 PEGAF Platform	222
5.2 Implementation Feasibility	223
6 Conclusions	224
References	224
 Services for Competitive and Sustainable Manufacturing in the Smart Grid	 227
<i>Vittaldas V. Prabhu</i>	
1 Introduction	227
2 Desiderata of Services	230
3 Simulation-Based Distributed Feedback Control	233
4 Simulation Results	236
5 Conclusions	238
References	239
 Different Approaches Regarding the Operational Control of Production in a Flexible Manufacturing Cell	 241
<i>Nick Andrei Ivanescu, Mihai Parlea, and Andrei Rosu</i>	
1 Introduction	241
2 System Architecture and Production Flow	242
3 First Control Solution and PLC-Based Implementation of Order Holons	243
3.1 Theoretical Backgrounds	243
3.2 Project Structure	244
3.3 The Routing Challenge	246
4 Failure and Perturbations Management	247
4.1 Case 1: Failure / Recovery of a Resource	248
4.2 Case 2: Re-supplying Mechanism	248
5 Second Approach: Using Intelligent Products	249
5.1 Routing a Pallet	251
6 Communication Inside the System	252
7 Practical Results and Conclusions	253
References	253

Using Hybrid Petri Nets for Performance Analysis in Manufacturing Systems	255
<i>Calin Munteanu, Simona Caramihai, Mihnea Alexandru Moisescu, and Ioan Stefan Sacala</i>	
1 Introduction	255
2 Continuous Petri Nets	255
3 Hybrid Petri Nets	259
4 Modelling Manufacturing Systems with Hybrid Petri Nets – Case Study	260
5 Analysis	263
6 Conclusions	264
References	264
A JADE Environment for Product Driven Automation of Holonic Manufacturing	265
<i>Silviu Raileanu, Mihai Parlea, Theodor Borangiu, and Octavian Stocklosa</i>	
1 Introduction	265
2 Using Intelligent Products for Decision Taking in an Industrial Environment	266
2.1 Control System Model	266
2.2 Production Driving Strategies	268
2.3 Using the CNP to Obtain Workstation Offers and Make Reservations	270
2.4 Comparing Robot Offers	271
2.5 Planning the Route	272
2.6 Taking the Production Decision	273
3 Product Driven Automation	273
4 Software System for Implementation Using the JADE Environment	275
4.1 Message Exchange System	275
4.2 System Classes and Implementation	276
5 Conclusions	277
References	277
Physical Internet Enabled Open Hub Network Design for Distributed Networked Operations	279
<i>Eric Ballot, Olivier Gobet, and Benoit Montreuil</i>	
1 Introduction	279
2 A New Logistics Paradigm: The Physical Internet	280
2.1 Motivations for a New Logistics Paradigm	280
2.2 The Physical Internet	281
3 Physical Internet enabled open hub network design	283
3.1 Network Design and Assumptions	283
3.2 Typical Logistics Network Optimizations Problems	284
3.3 Open Hub Network Design for the Physical Internet	284

4 Open Hub Network Design for Physical Internet Proof of Efficiency Purposes.....	286
4.1 A Need of Proof of Efficiency by Simulation of Decentralized Design.....	286
4.2 Open Hub Networks Design by an Ad Hoc Evolutionist Algorithm.....	286
4.3 An Open Hub Network for Food Distribution in France	288
5 Conclusion and Future Work	290
References	291
 Volunteer Based Search Engine for Holonic Manufacturing Services	293
<i>Cristina Morariu, Octavian Morariu, and Theodor Borangiu</i>	
1 Introduction	293
2 System Architecture.....	295
3 Holonic Manufacturing System Web Service Design	298
4 Volunteer Based Search Engine	299
Phase I – Semantic Search.....	299
Phase II – Volunteer Challenge	300
5 Conclusions and Future Work	303
References	305
 Impact of Information Technology on the Quality of Health Services	307
<i>Radu Dobrescu and Victor Purcarea</i>	
1 Introduction	307
2 Major Effects of Health Information Technology Implementation	308
2.1 Effects on Quality of Medical Care	308
2.2 Effects on HIT Efficiency.....	308
2.3 Effects on Costs	309
3 The Impact of Service Oriented Architecture on Health Information Systems	309
4 Service-Oriented Solutions for Healthcare	310
5 The HSSP/HL7 SOA Interoperability Paradigm	311
6 State of the Art and Trends of HL7 Implementation	313
7 HL7 Integration	317
8 Conclusions	318
References	318
 Competency Management System for IT Project-Oriented Organizations	321
<i>Constanta-Nicoleta Bodea and Robert Buchmann</i>	
1 Introduction	321
2 Literature Review	324
3 The Proposed Solution for the Competency Management System.....	325
3.1 The Architecture of the Competency Management System.....	327
3.2 The Project Management Competence Ontology	328

3.3 The IT Competence Ontology	329
4 The Experimentation of Competency Management System.....	330
5 Conclusions and Future Work	332
References	333
Knowledge-Based Adaptive Machining Concept for Service Oriented Architectures.....	335
<i>Alexandru Dumitrasche, Theodor Borangiu, Sylvain Pateloup, and Grigore Gogu</i>	
1 Introduction	335
2 Overview of the Knowledge-Based Adaptive Machining Concept	336
3 Management Module	337
4 Observation of the Milling Process.....	338
5 Adaptive Machining Strategy	341
5.1 Algorithm Overview	342
5.2 Core Algorithm: Advancing with Constant Engagement	343
5.3 Examples of Generated Toolpaths	344
6 The Prediction Module	345
7 Conclusions	346
References	346
Author Index	349
Subject Index.....	351