Contents

Part I Theory and Experiment: Why We Need TDDFT

1	Short	t-Pulse Pl	hysics	3
	1.1	Introdu	iction	3
	1.2	Spectro	oscopic Tools	4
	1.3		s with Intense Short Laser Pulses	5
		1.3.1	Above Threshold Ionization	6
		1.3.2	High Harmonic Generation	7
	1.4	Femtos	second Science	8
	1.5	Attosec	cond Science	9
		1.5.1	Electron Spectroscopy: RABBIT and Streaking	10
		1.5.2	Attosecond Transient Absorption	12
		1.5.3	Ion Spectroscopy: Electron Localization on the	
			Attosecond Timescale	12
		1.5.4	Control of Dissociative Ionization	13
	1.6	Conclu	sions	13
2	Spect	troscopy i	in the Frequency Domain	15
	2.1		ection	15
	2.2		Electron Interaction	16
		2.2.1	Photon Probe	16
		2.2.2	Electron-Electron Scattering	18
		2.2.3	Finite Momentum Transfers	18
	2.3	Propert	ties to Study	19
		2.3.1	Response Functions	19
		2.3.2	Typical Excitations	20
	2.4	Technic	ques	21
		2.4.1	Ellipsometry	21
		2.4.2	Photoemission Spectroscopies	22
		2 4 3	Photon Absorption	24

xiv Contents

		2.4.4	Inelastic Scattering	26
		2.4.5	Non-linear Optics	28
	2.5	Summa	ıry	28
3			pic Description of a Macroscopic Experiment	29
	3.1		ction	29
	3.2	Theore	tical Spectroscopy	30
	3.3	Photoer	mission Spectra and Spectral Functions	32
	3.4	Micros	copic Description of Neutral Excitations	37
	3.5	Micros	copic Response Beyond the	
		Indeper	ndent-Particle Picture	41
	3.6	Micros	copic-Macroscopic Connection	45
	3.7	Conclu	sions	50
Pa	rt II	Basic The	eory	
4	Intr	oduction t	o TDDFT	53
	4.1		action	53
	4.2		-One Density-Potential Mapping	57
	4.3		Dependent Kohn-Sham Equations	61
	4.4		Details and Extensions	63
		4.4.1	The Surface Condition	64
		4.4.2	Interacting and Non-interacting	
			v-Representability	65
		4.4.3	A Variational Principle	66
		4.4.4	The Time-Dependent Current	67
		4.4.5	Beyond the Taylor-Expansion	68
		4.4.6	Exact TDKS Scheme and its Predictivity	69
		4.4.7	TDDFT in Other Realms	71
	4.5		ncy-Dependent Linear Response	72
	1.5	4.5.1	The Density-Density Response Function	72
		4.5.2	Excitation Energies and Oscillator Strengths	, _
		7.5.2	from a Matrix Equation	75
		4.5.3	The xc Kernel.	79
		4.5.4	Spin-Decomposed Equations	81
		4.5.5	A Case Study: The He Atom	82
	4.6			86
			-Order Response	88
	4.7		Adiabatic Approximations: ALDA ACCA	00
		4.7.1	Adiabatic Approximations: ALDA, AGGA,	00
		470	AB3LYP, etc	89
		4.7.2	Orbital Functionals	90
		4.7.3	Hydrodynamically Based Kernels	91

Contents xv

	4.8	General Performance and Challenges)2
		4.8.1 Extended Systems	2
			95
			7
5	Evant	Conditions and Their Relevance in TDDFT	۱1
3	5.1	Introduction	
	5.2	Review of the Ground State	
	3.2	5.2.1 Basic Definitions	
		5.2.2 Standard Approximations	
		5.2.3 Finite Systems	•
		5.2.4 Extended Systems	
	5.3	Overview for TDDFT	
	5.5	5.3.1 Definitions	
		5.3.2 Approximations	
	5.4	General Conditions	
	3.4	5.4.1 Adiabatic Limit	
		5.4.2 Equations of Motion	
		5.4.3 Self-interaction	
		5.4.4 Initial-State Dependence	
		5.4.5 Coupling-Constant Dependence	
		5.4.6 Translational Invariance	
	5.5	Linear Response	
	3.5	5.5.1 Consequences of General Conditions	
		5.5.2 Properties of the Kernel	
		5.5.3 Excited States	_
	5.6	Extended Systems and Currents	
	5.0	5.6.1 Gradient Expansion in the Current	
		5.6.2 Polarization of Solids	
	5.7	Summary	
	3.7	Summary	-
6	Orbit	al Functionals 12	25
	6.1	Why Orbital Functionals are Needed	25
	6.2	Using Orbital Functionals in TDDFT:	
		Some Choices to Make	29
	6.3	The Time-Dependent Optimized Effective Potential 13	31
	6.4	A Few Examples	37
7	Resp	onse Functions in TDDFT: Concepts	
	-		39
	7.1	Introduction	39
	7.2	Response Functions	40
			4]
			43

xvi Contents

	7.3	Method	s for Calculating Response Functions	144
		7.3.1	Time-Propagation Method	145
		7.3.2	Sternheimer Method	147
		7.3.3	Casida Method	153
		7.3.4	Generalizations and Discussion	156
	7.4	Applica	tions of Linear Response	157
		7.4.1	Response to Electric Perturbations	157
		7.4.2	Response to Magnetic Perturbations	160
		7.4.3	Response to Structural Perturbations	162
		7.4.4	Mixed Electric and Structural Response	
			to Structural Perturbations	164
		7.4.5	Response to $k \cdot p$ Perturbations	165
8	Memo	ry: Histo	ory, Initial-State Dependence,	
			citations	167
	8.1	Introduc	ction	167
	8.2	History	Dependence: an Example	169
	8.3		State Dependence	171
	8.4		y: an Exact Condition	174
	8.5	•	y in Quantum Control Phenomena	177
	8.6		y Effects in Excitation Spectra	180
	8.7		, (184
Par	t III	Advance	d Concepts	
9	Beyon	d the Ru	inge-Gross Theorem	187
	9.1	Introduc	ction	187
	9.2	The Ex	tended Runge-Gross Theorem: Different Interactions	
		and Init	tial States	188
	9.3	Runge-	Gross Theorem for Dipole Fields	194
	9.4		oility of the Linear Density Response Function	195
	9.5	Global	Fixed-Point Proof of TDDFT	200
	9.6	Conseq	uences of v-Representability for the Quantum	
			nical Action	206
10	Open	Quantur	n Systems: Density Matrix Formalism	
			ons	211
	10.1		ction	211
	10.2		eneralized Quantum Master Equation	213
		10.2.1	Derivation of the Quantum Master Equation Using	
			the Nakajima–Zwanzig Projection Operator	
			Formalism	213
		10.2.2	The Markov Approximation	214

Contents xvii

	10.3	Rigorous Foundations of OQS-TDDFT	215
		10.3.1 The OQS-TDDFT van Leeuwen Construction	215
		10.3.2 The Double Adiabatic Connection	218
	10.4	Simulating Real-Time Dissipative Dynamics	
		with a Unitarily Evolving Kohn-Sham System	220
	10.5	OQS-TDDFT in the Linear Response Regime Using	
		the Open Kohn-Sham Scheme	222
	10.6	Positivity of the Lindblad Master Equation	
		for Time-Dependent Hamiltonians	225
	10.7	Comparison of OQS-TDDFT in the Stochastic Schrödinger	
		Equation and Master Equation Approaches	228
	10.8	Conclusions and Outlook	229
11	Open	Quantum Systems: A Stochastic Perspective	231
	11.1	Introduction	231
	11.2	General Remarks on Open Quantum Systems	233
		11.2.1 Partitioning into System and Environment	233
		11.2.2 Physical Assumptions	234
	11.3	Stochastic Schrödinger Equations	234
	11.4	Derivation of Master Equations from Stochastic	
		Schrödinger Equations	239
	11.5	Stochastic Current Density Functional Theory	241
		11.5.1 Formal Aspects of Stochastic Current Density	
		Functional Theory	241
		11.5.2 Practical Aspects of a Stochastic Simulation:	
		Quantum Jump Algorithm	243
		11.5.3 Stochastic Quantum Molecular Dynamics	244
	11.6	Open Questions in TDDFT for Open Quantum Systems	
		and Outlook	246
12	Multi	component Density-Functional Theory	249
	12.1	Introduction	249
	12.2	Fundamentals	250
		12.2.1 Definition of the Densities	253
	12.3	The Runge-Gross Theorem for Multicomponent Systems	253
	12.4	The Kohn-Sham Scheme for Multicomponent Systems	254
	12.5	The Multicomponent Action	256
	12.6	Linear Response and Multicomponent Systems	258
	12.7	Example	260
	12.8	Conclusions	263
13	Quan	tum Optimal Control	265
	13.1	Introduction	265
	13.2	The Essential QOCT Equations	266
	13.3	Optimization for the TDKS System	270

xviii Contents

Part 1	[V	Real-	Time	Dynam	ics
--------	----	-------	------	-------	-----

14	Non-l	Sorn-Oppenheimer Dynamics and Conical Intersections	219
	14.1	Introduction	279
	14.2	Wave-Function Theory	282
		14.2.1 Born–Oppenheimer Approximation and Beyond	283
		14.2.2 Mixed Quantum/Classical Dynamics	286
		14.2.3 Pathway Method	288
	14.3	TDDFT	290
	14.4	Perspectives	298
15		e Combination of TDDFT with Molecular Dynamics:	
	New 1	Developments	301
	15.1	Introduction	301
	15.2	Fast Ehrenfest Molecular Dynamics	302
	15.3	MD at Finite Electronic Temperature	309
16	Excite	ed-State Properties and Dynamics	317
	16.1	Derivatives of Excited-State Energies in TDDFT	318
	16.2	Implementation of Excited-State Energy Derivatives	323
		16.2.1 Atom-Centered Basis Sets	323
		16.2.2 Plane-Wave Basis Sets	325
		16.2.3 Tamm–Dancoff Approximation	325
		16.3.4 Resolution-of-the-Identity Approximation	326
	16.3	Performance of TDDFT for Excited-State Energies	
		and their Derivatives	326
		16.3.1 Singlet Excitations	326
		16.3.2 Charge-Transfer Excitations in TDDFT	329
		16.3.3 Rydberg, Triplet Excitations and Excitations	
		with Doubles Character	331
	16.4	Non-Adiabatic Coupling Matrix Elements	332
	16.5	Excited-State Dynamics	334
	16.6	Solvation Effects and Coupling to Classical Force Fields	335
17	Electi	ronic Transport	337
	17.1	Introduction	337
	17.2	TDDFT Approaches to Transport	339
		17.2.1 Finite Systems	339
		17.2.2 Infinite Systems via Embedding Technique	340
		17.2.3 Quantum Kinetic Approach	348
	17.3	Conclusions	350

Contents

18	Atoms	and Molecules in Strong Laser Fields	351
	18.1	Introduction: New Light Sources for the	
		Twenty-first Century	351
	18.2	Atoms in Strong Laser Fields: an Overview	353
		18.2.1 Multiphoton Ionization	353
		18.2.2 Above-Threshold Ionization	355
		18.2.3 Harmonic Generation	356
		18.2.4 Theoretical Methods	357
	18.3	TDDFT for Atoms in Strong Laser Fields	358
	18.4	Molecules in Strong Fields	362
		18.4.1 Overview	362
		18.4.2 A 1D Example: H ₂ with Fixed Nuclei	364
		18.4.3 TDDFT for Molecules in Strong Fields	367
	18.5	Conclusion and Perspectives	370
Dom	4 X7 NI.	umerical Aspects	
rar	L V IN	umericai Aspects	
19	The L	iouville-Lanczos Approach to Time-Dependent	
	Densit	y-Functional (Perturbation) Theory	375
	19.1	Introduction	375
	19.2	Statement of the Problem, Minimal Theoretical	
		Background, and Notation	377
		19.2.1 Representation of the response density matrix	
		and of other operators	377
		19.2.2 Dipole Operator in Periodic	
		Boundary Conditions	381
	19.3	Algorithm	382
		19.3.1 Lanczos Bi-orthogonalization Algorithm	382
		19.3.2 Calculation of the Polarizability	383
		19.3.3 Extrapolating the Lanczos Recursion	385
	19.4	Optical Sum Rules	386
	19.5	Application to an Organic Dye Molecule	388
	19.6	Conclusions	389
20		rojector Augmented Wave Method	391
	20.1	Introduction	391
	20.2	The PAW Method	392
	20.3	Operators	395
	20.4	Ground-State Kohn-Sham Equation and Forces	396
		20.4.1 Connection to Nonlocal Pseudopotentials	397
	20.5	Time-Dependent DFT	397
		20.5.1 Time-Propagation	398
		20.5.2 Linear-Response TDDFT	399
	20.6	Applications	399

xx Contents

21	Harne	essing the	Power of Graphic Processing Units	401
	21.1		etion	401
	21.2	Basic Co	oncepts in GPU Architectures	402
	21.3	GPU Pro	ogramming	403
		21.3.1	The OpenCL Language	404
		21.3.2	Evaluation of Benefits: Performance	
			with Complex Codes	404
	21.4	GPUs fo	or DFT and TDDFT	405
	21.5	GPU im	aplementation in the BigDFT code	405
		21.5.1	The Code Structure: Preliminary	
			CPU Investigation	406
		21.5.2	GPU Convolution Routines and CUBLAS	
			Linear Algebra	406
		21.5.3	Performance Evaluation of Hybrid Code	407
	21.6	TDDFT	on GPUs: implementation in OCTOPUS	407
		21.6.1	Working with Blocks of Kohn-Sham Orbitals	409
		21.6.2	Application of the Kohn-Sham Hamiltonian	410
		21.6.3	The Kinetic Energy Operator in Real-Space	410
		21.6.4	Overall Performance Improvements	411
	21.7	Future d	developments in TDDFT	411
	21.8		sions	412
Par	t VI	TDDFT V	Versus Other Theoritical Techniques	
- 442			crous concrete recommended	
22	Disper	rsion (var	n der Waals) Forces and TDDFT	417
	22.1		ction	417
	22.2	Simple !	Models of the vdW Interaction between	
			ystems	418
		22.2.1	Coupled-Fluctuation Picture	418
		22.2.2	Picture Based on the Static Correlation Hole:	
			Failure of LDA/GGA at Large Separations	418
		22.2.3	Picture Based on Small Distortions of the	
			Groundstate Density	419
		22.2.4	Coupled-Plasmon Picture	419
	22.3	The Sin	nplest Models for vdW Energetics	
			er Systems	420
	22.4		Perturbation Theory Approach	420
		22.4.1		
			Casimir-Polder Formula: Second Order Perturbation	
			Casimir-Polder Formula: Second Order Perturbation Theory for Two Finite Nonoverlapping Systems	420
			Theory for Two Finite Nonoverlapping Systems	420 422
		22.4.2 22.4.3	Theory for Two Finite Nonoverlapping Systems vdW and Higher-Order Perturbation Theory	422
	22.5	22.4.2 22.4.3	Theory for Two Finite Nonoverlapping Systems	

Contents xxi

	22.6	Correlation Energies From Response Functions:	
		The Fluctuation-Dissipation Theorem	424
		22.6.1 Basic Adiabatic Connection	
		Fluctuation-Dissipation Theory	425
		22.6.2 Exact Exchange: a Strength of the	
		ACFD Approach	428
	22.7	The xc Energy in the Direct Random	
		Phase Approximation	431
		22.7.1 Casimir–Polder Consistency: a Good Feature	
		of the dRPA for vdW Calculations in the	
		Well Separated Limit	431
		22.7.2 Problems With the dRPA	433
	22.8	Beyond dRPA: Non-TDDFT Methods	434
	22.9	Beyond the dRPA: ACFD With a Nonzero xc Kernel	434
		22.9.1 The Case of Two Small Distant Systems	
		in the ACFD With a Nonzero xc Kernel	434
		22.9.2 Beyond the dRPA in the ACFD:	
		energy-optimized f_{xc} kernels	435
		22.9.3 Beyond the RPA in the ACFD: More Realistic	
		Uniform-Gas Based f_{xc} Kernels	436
		22.9.4 xc Kernels not Based on the Uniform	
		Electron Gas	437
	22.10	Density-Based Approximations for the Response Functions	
		in ACFD vdW Theory	438
		22.10.1 Density-Based Approximations for the	
		Non-Overlapping Regime	438
		22.10.2 "Seamless" Density-Based vdW Approximations	
		Valid into the Overlapped Regime	439
	22.11	Summary	440
23	Nonlo	cal Van Der Waals Density Functionals Based	
	on Lo	cal Response Models	443
	23.1	Introduction	443
	23.2	Long-Range Asymptote of Dispersion Interaction	444
		23.2.1 Local Polarizability Formalism	444
		23.2.2 Practical Local Polarizability Models	445
	23.3	General and Seamless Nonlocal van der Waals	
		Density Functionals	448
		23.3.1 Functional Form	448
		23.3.2 vdW-DF-04 and its Variants	449
		23.3.3 VV09 and VV10	450
		23.3.4 Implementation	452
	23.4	Dispersionless Correlation and Exchange Components	453
	23.5	Benchmark Tests on Binding Energies	455
	23.6	Known Limitations and Avenues for Improvement	456

xxii Contents

24	Time-	-Dependent Current Density Functional Theory	457
	24.1	Introduction	457
	24.2	First Hints of Ultranonlocality: the Harmonic	
		Potential Theorem	458
	24.3	TDDFT and Hydrodynamics	459
	24.4	Current Density Functional Theory	462
	24.5	The xc Vector Potential for the Homogeneous	
		Electron Liquid	463
	24.6	The xc Vector Potential for the Inhomogeneous	
		Electron Liquid	467
	24.7	Irreversibility in TDCDFT	468
25	Time-	-Dependent Deformation Functional Theory	471
	25.1	Introduction	471
	25.2	Hydrodynamic Formulation of TDCDFT	472
		25.2.1 Local Conservation Laws and TDCDFT	
		Hydrodynamics in Eulerian Formulation	472
		25.2.2 Kohn–Sham Construction in TDCDFT	474
		25.2.3 TDCDFT Hydrodynamics	
		in the Lagrangian Form	475
	25.3	Time-Dependent Deformation Functional Theory	477
		25.3.1 Many-Body Theory in a Co-moving	
		Reference Frame	477
		25.3.2 Emergence of TDDefFT: A Universal	
		Many-Body Problem	479
	25.4	Approximate Functionals from TDDefFT	482
26	Time	-Dependent Reduced Density Matrix Functional Theory	485
-0	26.1	Introduction	485
	26.2	The One-Body Reduced Density Matrix	487
	26.3	1RDM Functionals	489
	26.4	The Equation of Motion	492
	26.5	Response Equations	493
	26.6	Excitations of H ₂	495
	26.7	Further Reading	496
		•	
Ref	erence	•	499
Ind	ex		555