Contents

Part I Mathematical Prerequisites

1	Intro	duction .	.,	3	
	1.1	Introduc	ction to Soliton Theory	3	
	1.2	Algebraic and Geometric Approaches			
	1.3		of Useful Derivatives in Finite		
		Dimensi	ional Spaces	6	
2	Mathematical Prerequisites			9	
	2.1 Elements of Topology			9	
		2.1.1	Separation Axioms	11	
		2.1.2	Compactness	13	
		2.1.3	Weierstrass–Stone Theorem	15	
		2.1.4	Connectedness, Connectivity, and Homotopy	17	
		2.1.5	Separability and Basis	18	
		2.1.6	Metric and Normed Spaces	19	
	2.2	Elements of Homology			
	2.3	Group A	Action	21	
3	The Importance of the Boundary				
	3.1 The Power of Compact Boundaries:				
		Represe	entation Formulas	23	
		3.1.1	Representation Formula for $n = 1$:		
			Taylor Series	24	
		3.1.2	Representation Formula for $n = 2$: Cauchy Formula	24	
		3.1.3	Representation Formula for $n = 3$: Green Formula	25	
		3.1.4	Representation Formula in General: Stokes Theorem	26	
	3.2	2 Comments and Examples			
4	Vector Fields, Differential Forms, and Derivatives			31	
	4.1	Manifol	lds and Maps	32	
	4.2	Differential and Vector Fields			

digitalisiert durch DEUTSCHE NATIONAL BIBLIOTHEK

xii Contents

	4.3	Existence and Uniqueness Theorems: Differential			
		Equation Approach	40		
	4.4	Existence and Uniqueness Theorems: Flow Box Approach	45		
	4.5	Compact Supported Vector Fields	47		
	4.6	Differential Forms and the Lie Derivative	48		
	4.7	Differential Systems, Integrability and Invariants	54		
	4.8	Poincaré Lemma	56		
	4.9	Fiber Bundles and Covariant Derivative	57		
		4.9.1 Principal Bundle and Frames	59		
		4.9.2 Connection Form and Covariant Derivative	61		
	4.10	Tensor Analysis	66		
	4.11	The Mixed Covariant Derivative	69		
	4.12	Curvilinear Orthogonal Coordinates	71		
	4.13	Special Two-Dimensional Nonlinear Orthogonal Coordinates	75		
	4.14	Problems	76		
5	Coor	netry of Curves	79		
3	5.1	Elements of Differential Geometry of Curves	79		
	5.1	Closed Curves	86		
	5.3	Curves Lying on a Surface	91		
	5.3 5.4	Problems	91		
	3.4	riobienis	94		
6	Geon	Geometry of Surfaces			
	6.1	Elements of Differential Geometry of Surfaces	99		
	6.2	Covariant Derivative and Connections	107		
	6.3	Geometry of Parameterized Surfaces Embedded in \mathbb{R}^3	110		
		6.3.1 Christoffel Symbols and Covariant			
		Differentiation for Hybrid Tensors	113		
	6.4	Compact Surfaces	115		
	6.5	Surface Differential Operators	117		
		6.5.1 Surface Gradient	117		
		6.5.2 Surface Divergence	118		
		6.5.3 Surface Laplacian	120		
		6.5.4 Surface Curl	121		
		6.5.5 Integral Relations for Surface Differential Operators	124		
		6.5.6 Applications	125		
	6.6	Problems	129		
7	Moti	on of Curves and Solitons	131		
•	7.1	Kinematics of Two-Dimensional Curves			
	7.2	Mapping Two-Dimensional Curve Motion			
	, .2	into Nonlinear Integrable Systems	136		
	7.3	The Time Evolution of Length and Area	144		
	7.4	Cartan Theory of Three-Dimensional Curve Motion	150		
	7.4	Kinematics of Three-Dimensional Curves	150		

Contents xiii

	7.6		ng Three-Dimensional Curve Motion		
			onlinear Integrable Systems	156	
	7.7	Probler	ns	157	
8	The	ory of Mo	otion of Surfaces	159	
	8.1	-	ntial Geometry of Surface Motion	159	
	8.2		nates and Velocities on a Fluid Surface	162	
	8.3		atics of Moving Surfaces	168	
	8.4		ics of Moving Surfaces	170	
	8.5	-	ary Conditions for Moving Fluid Interfaces	173	
	8.6		ics of the Fluid Interfaces	174	
	8.7	•	ns	176	
Par	t II		and Nonlinear Waves on Closed Curves		
9	Kine	ematics o	f Hydrodynamics	179	
	9.1	Lagran	gian vs. Eulerian Frames	179	
		9.1.1	Introduction	180	
		9.1.2	Geometrical Picture for Lagrangian vs. Eulerian	181	
	9.2	Fluid F	iber Bundle	183	
		9.2.1	Introduction	183	
		9.2.2	Motivation for a Geometrical Approach	186	
		9.2.3	The Fiber Bundle	189	
		9.2.4	Fixed Fluid Container	190	
		9.2.5	Free Surface Fiber Bundle		
		9.2.6	How Does the Time Derivative of Tensors		
		7.2.0	Transform from Euler to Lagrange Frame?	196	
	9.3	Path Li	nes, Stream Lines, and Particle Contours	199	
	9.4		n–Lagrangian Description for Moving Curves		
	9.5		ee Surface		
	9.6		on of Continuity		
	7.0	9.6.1	Introduction		
		9.6.2	Solutions of the Continuity Equation	200	
		7.0.2	on Compact Intervals	214	
	9.7	Probles	ms		
10	Dyn		Hydrodynamics	223	
	10.1		ntum Conservation: Euler and Navier-Stokes		
		Equations		223 226	
	10.2		Boundary Conditions		
	10.3	Circula	Circulation Theorem		
	10.4	Surface	e Tension	234	
		10.4.1	Physical Problem	234	
		10.4.2	Minimal Surfaces	236	
		10.4.3	Application	238	

xiv Contents

		10.4.4	Isothermal Parametrization	241
		10.4.5	Topological Properties of Minimal Surfaces	244
		10.4.6	General Condition for Minimal Surfaces	246
		10.4.7	Surface Tension for Almost Isothermal	
			Parametrization	247
	10.5		Fluids	250
	10.6	Represe	entation Theorems in Fluid Dynamics	250
		10.6.1	Helmholtz Decomposition Theorem in \mathbb{R}^3	250
		10.6.2	Decomposition Formula for Transversal	
			Isotropic Vector Fields	253
		10.6.3	Solenoidal–Toroidal Decomposition Formulas	256
	10.7	Problen	ns	257
11	Nonli	near Su	rface Waves in One Dimension	259
	11.1	KdV E	quation Deduction for Shallow Waters	259
	11.2	Smooth	n Transitions Between Periodic and Aperiodic	
			ns	264
	11.3	Modifie	ed KdV Equation and Generalizations	269
	11.4		lynamic Equations Involving	
		Higher-	-Order Nonlinearities	270
		11.4.1	A Compact Version for KdV	271
		11.4.2	Small Amplitude Approximation	273
		11.4.3	Dispersion Relations	276
		11.4.4	The Full Equation	277
		11.4.5	Reduction of GKdV to Other Equations	
			and Solutions	279
		11.4.6	The Finite Difference Form	283
	11.5	Boussin	nesq Equations on a Circle	286
12	Nonlinear Surface Waves in Two Dimensions			289
	12.1	Geome	etry of Two-Dimensional Flow	289
	12.2	Two-D	imensional Nonlinear Equations	296
	12.3	Two-D	imensional Fluid Systems with Boundary	
	12.4	Oscilla	tions in Two-Dimensional Liquid Drops	
	12.5	Contou	rs Described by Quartic Closed Curves	304
	12.6	Surface	e Nonlinear Waves in Two-Dimensional	
		Liquid	Nitrogen Drops	305
13	Nonli	inear Su	rrface Waves in Three Dimensions	309
	13.1		tions of Inviscid Drops: The Linear Model	
		13.1.1	Drop Immersed in Another Fluid	313
		13.1.2	Drop with Rigid Core	315
		13.1.3	Moving Core	321
		13.1.4	Drop Volume	325
	13.2		ations of Viscous Drops: The Linear Model	327
		1221	Madal 1	329

	13.3	Nonlinear Three-Dimensional Oscillations			
		of Axisymmetric Drops	341		
		13.3.1 Nonlinear Resonances in Drop Oscillation	351		
	13.4	Other Nonlinear Effects in Drop Oscillations	362		
	13.5	Solitons on the Surface of Liquid Drops	363		
	13.6	Problems	372		
14	Othe	r Special Nonlinear Compact Systems	373		
	14.1	Nonlinear Compact Shapes and Collective Motion	373		
	14.2	The Hamiltonian Structure for Free Boundary			
		Problems on Compact Surfaces	378		
Par	t III	Physical Nonlinear Systems at Different Scales			
15	Filan	nents, Chains, and Solitons	385		
10	15.1	Vortex Filaments	385		
	13.1	15.1.1 Gas Dynamics Filament Model and Solitons	391		
		15.1.2 Special Solutions	394		
		15.1.3 Integration of Serret–Frenet Equations for Filaments	395		
		15.1.4 The Riccati Form of the Serret–Frenet Equations	397		
	15.2	Soliton Solutions on the Vortex Filament	400		
	13.2	15.2.1 Constant Torsion Vortex Filaments	400		
			400		
			402		
	15.2	Schrödinger Equation	403		
	15.3	Closed Curves Solitons	406		
	15.4	Nonlinear Dynamics of Stiff Chains	408		
	15.5	Problems	410		
16	Solite	ons on the Boundaries of Microscopic Systems	411		
	16.1	Solitons as Elementary Particles	412		
	16.2	Quantization of Solitons on a Closed Contour and Instantons	414		
	16.3	Clusters as Solitary Waves on the Nuclear Surface			
	16.4	Solitons and Quasimolecular Structure 4:			
	16.5	Soliton Model for Heavy Emitted Nuclear Clusters	428		
		16.5.1 Quintic Nonlinear Schrödinger Equation			
		for Nuclear Cluster Decay	430		
	16.6	Contour Solitons in the Quantum Hall Liquid	433		
		16.6.1 Perturbative Approach	436		
		16.6.2 Geometric Approach	438		
17	Nonl	inear Contour Dynamics in Macroscopic Systems	445		
	17.1	Plasma Vortex	445		
		17.1.1 Effective Surface Tension			
		in Magnetohydrodynamics and Plasma Systems	445		
		17.1.2 Trajectories in Magnetic Field Configurations	446		
		17.1.3 Magnetic Surfaces in Static Equilibrium	455		

xvi Contents

	17.2	Elastic Spheres	462
	17.3	Curvature Dependent Nonlinear Diffusion on Closed Surfaces	
	17.4	Nonlinear Evolution of Oscillation Modes	
		in Neutron Stars	465
18	Mathematical Annex		
	18.1	Differentiable Manifolds	467
	18.2	Riccati Equation	468
	18.3	Special Functions	469
	18.4	One-Soliton Solutions for the KdV, MKdV,	
		and Their Combination	470
	18.5	Scaling and Nonlinear Dispersion Relations	472
Ref	erence	s	475
Ind	ex		485