Contents

1.	Inti	oductio	on	1
			round State of Many-Body Systems and the Modes of	
		Excita	tion	1
	1.2	Electro	onic Excitation in Insulators and the Wannier-Mott Exciton	3
	1.3	The Fr	renkel Exciton	5
	1.4	The G	eneral Case	6
		1.4.1	Effective Mass Approximation	8
		1.4.2	The Role of Spin	8
		1.4.3	Interplay of Spin-Orbit and Exchange Interactions	9
		1.4.4	Davydov Splitting	10
		1.4.5	Charge Transfer Excitons	10
	1.5	Optica	ll Absorption Spectra	11
		1.5.1		12
			Forbidden Edge Case	13
		1.5.3	Transfer in our remove to waiting intott Excitor	13
	1.6	The Po	plariton and Spatial Dispersion	15
	1.7	Scope	of the Present Book	18
2.	The	oretical	Aspects of Excitonic Molecules	20
	2.1	Fission	and Fusion of Excitons vs. Chemical Reaction into	
		Excito	nic Molecules	20
	2.2	The Ex	scitonic Molecule and Electron-Hole Liquid	23
		2.2.1	Binding Energy and Electronic Structure of Excitonic	
			Molecule in a Simple System – CuX	23
		2.2.2	The Metallic Droplet and Excitonic Molecule in	
			Many-Valley Structures – Ge and Si	32
		2.2.3	The Excitonic Molecule in Many-Valley Systems – TIX and	
			AgX	39
		2.2.4	Influence of the Polarizable Lattice and the Effect of	
			Anisotropic Effective Mass – CdS and CdSe	44
		2.2.5	The Direct Forbidden Exciton – Cu ₂ O	46
	2.3	Optical	Response of an Excitonic Molecule	47
		2.3.1	Luminescence Spectrum	48
		2.3.2	Relaxation by Emission of Acoustic Phonons	55
		2.3.3	Optical Conversion of Excitons into Excitonic Molecules .	60
		2.3.4	Giant Two-Photon Absorption	61

VIII	Contents
VIII	1 Junenis

	2.4	Cohere	ent Optical Phenomena Due to the Excitonic Molecule	69
		2.4.1	Hyper-Raman Scattering and Luminescence	69
		2.4.2	Two-Polariton Scattering Due to the Excitonic Molecule .	75
		2.4.3	Dispersion of the Exciton Polariton and Excitonic	
			Molecule	79
		2.4.4	Four-Wave Mixing Due to the Excitonic Molecule	83
		2.4.5	Phase-Conjugation by Four-Wave Mixing	87
	2.5	The Ex	scitonic Molecule at High Densities	91
		2.5.1	Renormalization of the Exciton Polariton Due to the	
			Excitonic Molecule Giant Two-Photon Absorption	91
		2.5.2	Polarization Rotation Effects Due to Two-Photon	
			Excitation of the Excitonic Molecule	95
		2.5.3	Multi-Polariton Scattering Via Excitonic Molecules	102
		2.5.4	Optical Bistability Due to the Excitonic Molecule	106
		2.5.5	Relaxation and Bose Condensation of Excitonic	
			Molecules	110
2	Th.	Engiter	and Fraitania Malagula in Communa Walidas	116
Э.			and Excitonic Molecule in Cuprous Halides	116
			structure and Excitonic States	116
	3.2		n Absorption, Reflection, and Emission Spectra	117
		3.2.1	Absorption and Reflection Spectra	117
		3.2.2	Splitting of Exciton Bands by Perturbations	119
		3.2.3	Emission Spectra	121
		3.2.4	Phonon Structure in the Excitation Spectra of Free-Exciton	405
		225	Emission	125
		3.2.5	Bound Excitons	127
	2.2	3.2.6	CuCl-CuBr Solid Solutions	129
	3.3	_	Density Excitation Effects	132
		3.3.1	Exciton-Electron Interaction	132
		3.3.2	Effect on Exciton Absorption Bands	136
		3.3.3	Creation of the Excitonic Molecule by Exciton-Exciton	140
	2.4	Cianti	Collision	140
	3.4		Two-Photon Excitation of the Excitonic Molecule	144
		3.4.1	Evidence of Giant Two-Photon Creation	144
	2.5	3.4.2	Giant Two-Photon Absorption	146
	3.3		hoton Resonant Raman Scattering Via the Excitonic	140
			ıle	148
		3.5.1	Backward Scattering	148
		3.5.2	Forward Scattering	150
		3.5.3	Scattering with Recoil of the Upper-Branch Polariton	152
		3.5.4	Polarization Character – Geometrical Selection Rules	154
		3.5.5	Nonlinear Change of Exciton-Polariton Dispersion	155
	21	A	Associated with the GTA	155
	3. 0	Acoust	tic-Phonon Interaction of the Excitonic Molecule	161

		V	Comtanta	T3.
			Contents	IX
	3.7	Coexis	stence of Luminescence and Raman Components in the ant Excitation	166
	3.8	Redist	ribution of Excitonic Molecules Resonantly Generated by	100
		Two-P	Photon Excitation	170
		3.8.1		
			Luminescence	172
	3.9	Relaxa	ation of the Excitonic Molecule Due to Intermolecular	
		Collisi	ons: Influence on the GTA and Secondary Emissions	174
		3.9.1	Effect on the GTA Spectra	175
		3.9.2	Effect on Secondary Emissions	176
	3.10) Spatial	Dispersion of the Exciton and Excitonic Molecule	181
			CuCl	182
			CuBr	188
	3.11	Higher	r Excited States of the Excitonic Molecule	20 0
4.	The	orv of F	Excitons in Phonon Fields	203
		-	on-Phonon Interactions	204
	7.1	4.1.1	Types and Ranges of Electron-Phonon Interactions	204
		4.1.2	The Polaron	204
		4.1.3	Exciton-Phonon Interactions and the Form Factor	210
		4.1.4	Polaron Effects of an Exciton	211
	42		sciton in Spatially Fluctuating Fields	211
		4.2.1	Localization Versus Delocalization	212
		4.2.2	Overall Line-Shape of the Absorption Spectra	215
		4.2.3	Coherent Potential Approximation for an Exciton in a	213
			Mixed Crystal and in a Phonon Field	220
		4.2.4	The Urbach Rule and Exciton Localization	228
	4.3	Phono	n Structures in Exciton Spectra	234
		4.3.1	Motional Reduction of Phonon Sidebands	235
		4.3.2	Multicomponent Line-Shape Formula	238
		4.3.3	The Electron-Hole Relative Motion and the Phonon	
			Sideband of an Exciton	242
	4.4	Self-Tr	apping	245
		4.4.1	Local Stabilities of Free and Self-Trapped States	245
		4.4.2	Continuum Model for Self-Trapping	247
		4.4.3	Adiabatic Potentials for Self-Trapping	250
		4.4.4	Effective Mass Change in the F-S Transition	254
		4.4.5	Extrinsic Self-Trapping and Shallow-Deep Instability	258
		4.4.6	Instabilities in the Relative Motion of a Pair of Charged	
			Particles	260
		A A 7	0 (0)	

Survey of Experimental Studies of Self-Trapping and

4.4.7

4.5.1

264

270

270

X	Contents
^	CADILLETIIS

		4.5.2	Resonant Secondary Radiation	272
		4.5.3	Capture, Recombination, and Enhanced Defect Reaction	
			Via a Deep Impurity Level in a Semiconductor	273
		4.5.4	Self-Trapping and Recombination of an Exciton as a	
			Multiphonon Process	275
	4.6	Excito	nic Instability and Phase Changes	276
		4.6.1	t-U-S Problem	278
		4.6.2	Two-Site Two-Electron System	278
		4.6.3	Hückel's $(4n + 2)$ Rule for Ring Systems	280
		4.6.4	One-Dimensional Hubbard-Peierls System	282
		4.6.5	Prospects	283
5.	Exc	itons in	Condensed Rare Gases	285
	5.1	Electro	onic Structure of Condensed Rare Gases	286
	5.2		e Carriers in Condensed Rare Gases	288
	5.3		ns and Exciton-Phonon Interactions in Condensed Rare	
		Gases		290
		5.3.1	Exciton Absorption Spectra	292
		5.3.2	Nature of Relaxed Excitons in Condensed Rare Gases	295
		5.3.3	Formation of Self-Trapped Exciton Bubbles in Condensed	
			Neon	300
		5.3.4	Relaxation of Free Excitons in Photo-Excited Rare Gas	
			Solids	305
6.	Exc	iton-Ph	onon Processes in Silver Halides	309
	6.1	Electro	onic and Lattice Properties of Silver Halides	309
			ns and Exciton-Phonon Interactions in Silver Halides	316
		6.2.1	Exciton Transitions in Pure Crystals	317
		6.2.2	Exciton Transitions in Mixed Crystals	331
		6.2.3	Bound-Exciton Transitions at an Isoelectronic Iodine	
			Impurity	339
	6.3	Relaxa	tion Processes of Photo-Excited States in Silver and Alkali	
		Halide	s	347
	6.4	Localiz	zed Electrons and Holes in Silver Halides	351
		6.4.1	Nature of Localized Centers in Silver Halides Compared to	
			Color Centers in Alkali Halides	352
		6.4.2	Bound Polarons in Silver and Alkali Halides	358
		6.4.3	Photochemical Reactions in Silver Halides at Higher	
			Temperatures	364
7.	Exc	itons ar	nd Their Interactions with Phonons and External Fields in	
		llous Ha		370
	7.1	Band S	Structures and Exciton States of Thallous Halides	371
		7.1.1	Thallous Halides	371

		Contents	Αl		
		7.1.2 Band Structures	372		
		7.1.3 Exciton States	374		
	7.2	Optical Spectra of Thallous Halides	378		
		7.2.1 Absorption and Reflection Spectra in a Wide Energy			
		Range	378		
		7.2.2 Spectra of $X_6^+ \times X_6^-$ Direct Excitons	380		
		7.2.3 Spectra of $X_6^+ \times R_6^-$ Indirect Excitons	388		
		7.2.4 Free-Exciton Emission	392		
		7.2.5 Excitonic Molecules of $X_6^+ \times R_6^-$ Excitons	398		
	7.3	Resonant Raman Scattering by Excitons in Thallous Halides	403		
		7.3.1 LO Phonon Scattering Resonant to a Direct Exciton	403		
		7.3.2 Intervalley Scattering of a Direct Exciton	411		
	74	Excitons and Induced Self-Trapping in Mixed Crystals of Thallous	711		
	,	Halides	412		
		7.4.1 Exciton States in a Mixed Crystal	412		
		7.4.2 Self-Trapping Induced by Alloying	412		
	7.5	Excitons in Thallous Halides in External Fields			
	7.5		422		
			422		
			432		
		7.5.3 Uniaxial Stress Field	435		
8.	Pho	tocarrier Motion in Ionic Crystals	437		
	8.1	Photocurrent and Measurement	438		
	0.2	8.1.1 Photocurrent	438		
		8.1.2 Blocking Electrode Method and Response	439		
		8.1.3 Spectral Dependence of Photoconductivity	442		
	8.2	Measurements of Carrier Mobility and Cyclotron Resonance in	772		
	٠.ــ	Insulating Photoconductors	444		
		8.2.1 Carrier Mobility	444		
		8.2.2 Drift Mobility Measurement	447		
		8.2.3 Hall and Magnetoresistance Mobility Measurements	447		
		8.2.4 Detection of Cyclotron Resonance	450		
	8.3	Polaron and Mobility	451		
	0.0	8.3.1 Polaron Masses and Coupling Constants	451		
		8.3.2 Polaron Mobilities	452		
	8 4	8.3.2 Polaron Mobilities	461		
	0.4	8.4.1 Spin-Dependent Magnetoconductivity	461 461		
		- F F	461 464		
	8.5				
	0.5	Polarons with High Energy	468		
		1 · · · · · · · · · · · · · · · · · · ·	468		
		8.5.2 Hot-Polaron Transport Phenomena	470		
9,	Excitons and Phonon Couplings in Quasi-One-Dimensional Crystals				
		Halogen-Bridged Mixed-Valence Chain Compounds	475 476		
	9.2	Polyacetylene	482		

XII	• • • •
	Contents

XII	Contents	
	Mixed Stacked Donor-Acceptor Charge Transfer Complexes Segregated Stacked Donor-Acceptor Charge Transfer Complexes	489 495
Refere	nces	499
Subjec	t Index	521