CONTENTS

E. AXELRAD and F.A. EMMERLING, Intrinsic shell-theory	
formulation effective for large rotations and an	
application	1
J. BADUR and W. PIETRASZKIEWICZ, On geometrically non-	
linear theory of elastic shells derived from	
pseudo-Cosserat continuum with constrained micro-	
rotations	19
M. BERNADOU, Some mathematical results related to non-	
linear thin shell problems	33
J. BIELSKI, Postcritical deformations of meridional	
cross-section of elastic torodial shells subject	
to external pressure	47
W.R. BIELSKI and J.J. TELEGA, The complementary energy	
principle in finite elastostatics as a dual problem	62
H. BUFLER, Finite rotations and complementary extremum	
principles	
K.F. CHERNYKH, Deformation of the shell boundary	101
J.CHRÔŚCIELEWSKI and R. SCHMIDT, Comparison of numerical	
results for nonlinear finite element analysis of	
beams and shells based on 2-D elasticity theory and	
on novel finite rotation theories for thin structures	111
R. DE BOER and W. WALTHER, Fundamental equations and	
extremum principles in the theory of thin shells	
M. EPSTEIN, Inhomogeneity and rotation	131
Th. HINKELMANN, S. LUMPE and H. ROTHERT, On a general	
theory of large rotations and small strain with	
application to three-dimensional beam structures	136
M. IURA, Finite displacement theory of naturally curved	
and twisted beams with finite rotations	148
L. LIBRESCU and R. SCHMIDT, Higher-order moderate rotation	
theories for elastic anisotropic plates	158
J. MAKOWSKI and H. STUMPF, Finite strains and rotations	
in shells	175

H. MØLLMANN, Theory of thin walled elastic beams with	
finite displacements	195
LP. NOLTE, One-dimensional finite rotation shell	
problems in displacement formulation	210
LP. NOLTE, On the derivation and efficient computation	
of large rotation shell models	224
L. RECKE and W. WUNDERLICH, Rotations as primary unknowns	
in the nonlinear theory of shells and corresponding	
finite element models	239
R. SCHMIDT, Polar decomposition and finite rotation vector	
in first-order finite elastic strain shell theory	259
L.I. SHKUTIN, Nonlinear models of deformed thin bodies	
with separation of the finite rotation field	272
E. STEIN, K.H. LAMBERTZ and L. PLANK, Ultimate load	
analysis of thin walled steel structures with	
elastoplastic deformation properties using FEM -	
Theoretical, algorithmic and numerical investigations	286
M.L. SZWABOWICZ, Compatibility of rotations with the	
change-of-metric measures in a deformation of a	
material surface	306
R. VALID, Finite rotations, variational principles and	
buckling in shell theory	317
N.V. VALISHVILI and A.K. TVALCHRELIDZE, Numerical analysis	
of thin-walled structure finite displacements	333
D. WEICHERT, Elasto-plastic structures under variable	
loads at small strains and moderate rotations	343
G. WEMPNER, Finite rotations in the approximation of	
shells	357
Cz. WOŹNIAK, Finite rotations of linear elastic bodies	369