Contents

1	Intro	duction		1
	1.1	Transp	ort Phenomena in Porous Media and Modeling	1
	1.2	Moleci	ılar Dynamics Simulation and	
		Homog	genization Analysis	2
	1.3	Underg	ground Disposal of HLW's and Bentonite	5
2	Intro	Introduction to Continuum Mechanics		
	2.1	Newtonian Mechanics		
	2.2	Deform	nation Kinematics	11
		2.2.1	Motion and Configuration	12
		2.2.2	Changes of Frame and Frame Indifference	16
		2.2.3	Motion in a Non-inertial System ♣	17
		2.2.4	Deformation Gradient, Strain and Strain Rate	19
		2.2.5	Transport Theorems and Jump Condition	25
	2.3	Mass C	Conservation Law	29
	2.4	Law of	Conservation of Linear Momentum and Stress	30
		2.4.1	Eulerian Descriptions	30
		2.4.2	Lagrangian Descriptions &	33
	2.5	Conservation of Moment of Linear Momentum		
		and Sy	mmetry of Stress	35
	2.6 Incremental Forms of the Equation of Equilibrium		ental Forms of the Equation of Equilibrium 4	36
		2.6.1	Total Lagrangian Form	36
		2.6.2	Updated Lagrangian Form	37
	2.7	Specifi	c Description of the Equation of Motion \$\blacktriangle \cdots	38
		2.7.1	Eulerian Equation of Motion	38
		2.7.2	Lagrangian Equation of Motion	39
		2.7.3	Incremental Form of the Total Lagrangian	
			Equation of Motion	39
		2.7.4	Incremental Form of the Updated Lagrangian	
			Equation of Motion	39
			=	

viii Contents

	2.8	Respon	se of Materials: Constitutive Theory	40
		2.8.1	Fundamental Principles of Material Response	41
		2.8.2	Convected Derivative, Corotational Derivative	
			and Frame Indifference	42
		2.8.3	Invariants of Stress and Strain and Isotropic	
			Elastic Solids	46
		2.8.4	Newtonian Fluid	53
	2.9	Small S	Strain Viscoelasticity Theory	56
		2.9.1	Boltzmann Integral and Excitation-response Theory	56
		2.9.2	Stress Relaxation and the Relaxation Spectra:	
			Generalized Maxwell Model	58
		2.9.3	Creep and the Retardation Spectra:	
			Generalized Kelvin-Voigt Model	61
		2.9.4	Relaxation and Retardation Spectra and Their	
			Asymptotic Expansion	63
		2.9.5	Experiments for Determining Viscous Properties	64
	2.10	Small S	Strain Plasticity: Flow Theory	67
		2.10.1	Yield Function and Hardening Law	68
		2.10.2	Prager's Consistency Condition	71
		2.10.3	Flow Rule and Incremental Constitutive Law	72
_				
3			ium Thermodynamics	77
	3.1		of Classical Thermodynamics	77
		3.1.1	An Application of Classical Thermodynamics	
			for a Newtonian Fluid	78
		3.1.2	The Role of the Second Law of	
			Thermodynamics in Classical Theory	79
		3.1.3	The Entropy Inequality in Classical	
			Continuum Mechanics	80
		3.1.4	Note on the Proposed Framework	81
	3.2		vation of Energy: The First Law of Thermodynamics	82
		3.2.1	Stokes' Power Formulation as Mechanical	
			Conservation of Energy in a Continuum:	
			Eulerian Description	82
		3.2.2	Generalized Strain Measure and its Conjugate	
			Stress in a Continuum	86
		3.2.3	Stokes' Power Formula in a Continuum:	
			Lagrangian Description 4	87
		3.2.4	First Law of Thermodynamics in a Thermo-	
			mechanical Continuum: Conservation of	
			Mechanical and Thermal Energies	88
		3.2.5	First Law of Thermodynamics in a Thermo-	
			mechanical Continuum: Eulerian Description	89
		3.2.6	First Law of Thermodynamics in a Thermo-	
			mechanical Continuum: Lagrangian Description 🌢	90

	3.3	Second	d Law of Thermodynamics	90
		3.3.1	Thermal Energy and the Existence of Entropy:	
			The First Part of the Second Law of Thermodynamics	91
		3.3.2	Entropy Inequality: Second Part of the Second	
			Law of Thermodynamics	92
		3.3.3	Second Law of Thermodynamics in a Thermo-	
			mechanical Continuum: Lagrangian Description 🌲	97
	3.4	Therm	odynamic Functions	97
		3.4.1	Legendre Transformation and Convex Functions	98
		3.4.2	Thermodynamic Functions in a Thermo-	
			mechanical Field: Solids with Small Strain	99
		3.4.3	Thermodynamic Functions in a Thermo-	
			mechanical Field: A Finitely Strained Solid	105
		3.4.4	Thermodynamic Functions in a Thermo-	
			mechanical Field: A Fluid	108
	3.5	Chemi	cal Process and Thermodynamics	111
		3.5.1	Thermodynamic Variables in a Thermo-	
			mechanochemical Field	111
		3.5.2	Thermodynamic Functions in a Thermo-	
			mechanochemical Field: A Small Strain Solid	113
		3.5.3	Thermodynamic Functions in a Thermo-	
			mechanochemical Field: A Finitely Strained Solid	118
		3.5.4	Thermodynamic Functions in a Thermo-	
			mechanochemical Field: A Fluid	121
	3.6	Mixtu	re Theory for a Multi-component Solution	122
		3.6.1	Mass Conservation Law	124
		3.6.2	Conservations of Linear Momentum and	
			Moment of Momentum	128
		3.6.3	First Law of Thermodynamics in a Thermo-	
			mechanochemical Continuum: Conservation	
			of Energy	130
		3.6.4	Entropy Inequality in a Thermo-	
			mechanochemical Continuum	132
	3.7	Therm	odynamics Laws and Constitutive Theory 4	133
		3.7.1	Constitutive Theory of a Solid with Chemical	
			Processes in the Small Strain Field	134
	3.8	Summ	ary of the Framework of Non-equilibrium	
			nodynamics 4	135
	₹7• 4			
ł			k Equation, Variational Methods	100
			Principles	139
	4.1		ional Method for a One-dimensional Elastic Problem	139
		4.1.1	Strong Form	139
		4.1.2	Weak Form and the Virtual Work Equation	140
		4.1.3	Principle of the Energy Minimization and a	1 44
			Variational Method	141

x Contents

	4.2	Variational Method for a Three-dimensional	
		Zimetrenty 110010mitter	43
		··-·-	43
			44
		4.2.3 Principle of the Energy Minimization and a	
			45
	4.3	and I charty include and and anguarden processing	45
	4.4	Convolution Integral and Energy Forms for Parabolic	47
		and Tayperson 122s the transfer of the transfe	47 49
		2gj 1	19 50
	4.5	4.4.2 Energy Form of a Hyperbolic PDE	
_		r,11	,,
5		ical Theory of Diffusion and Seepage Problems in s Media	57
	5.1		57
	5.2	Diffusion and Seepage Problem for a Multi-component	,
	3.2		59
			60
			63
			66
		1 5 7	69
	5.3		69
	0.0		70
		5.3.2 Flow Through an Assembly of Pipes and Its	
		· · ·	72
		5.3.3 Flow in a Tank Filled with Solid Particles and	
		Its Permeability	73
	5.4	Fick's Law and Evaluation of the Diffusion Coefficient	74
	5.5	Adsorption Isotherm and the Distribution Coefficient	77
		5.5.1 Langmuir's Equilibrium Adsorption Isotherm 1	78
		5.5.2 Freundlich's Equilibrium Adsorption Isotherm	81
		5.5.3 Temkin's Equilibrium Adsorption Isotherm 18	81
			82
		1	82
	5.6	Transport Equations and Similitude Laws	82
6	Class	ical Theory of Consolidation for Saturated Porous Media 13	85
	6.1	1 6 1	85
	6.2	Conservation of Linear Momentum, Effective Stress	
		· · · · · · · · · · · · · · · · · · ·	86
	6.3		87
		6.3.1 Seepage Equation of Consolidation in a	_
		6 0	88
			89
		6.3.3 Incremental Form of the Equation of Equilibrium 19	90

Contents xi

	6.4	A Weal	k Form of Biot's Consolidation Equations	
		and Fin	nite Element Analysis	191
		6.4.1	Strong Form	191
		6.4.2	Weak Form	192
		6.4.3	Finite Element Analysis	193
	6.5	The Ca	m Clay Model	196
		6.5.1	Normally Consolidated Clay	196
		6.5.2	Over-consolidated Clay	197
		6.5.3	The Original Cam Clay Model	198
		6.5.4	Modified Cam Clay Model	204
		6.5.5	Elasto-plastic Constitutive Law	205
7	Intro	duction	to Homogenization Analysis	207
	7.1	One-di	mensional Problem of an Elastic Bar	207
	7.2	Micro/l	Macro Coordinates	207
	7.3	Micros	cale and Macroscale Problems	208
8	Hom	ogenizat	tion Analysis and Permeability of Porous Media	213
_	8.1		inhomogeneous Porous Media and Stokes' Equation	214
	8.2		e Theory for Two-scale Porous Media	214
	•	8.2.1	Homogenization Analysis and Seepage	
			Problem of Porous Media	215
		8.2.2	Analytical Solution for a Microscale Poiseulle Flow	219
		8.2.3	Finite Element Analysis for the Mass	
			Conservation Equation in the Micro-domain	220
		8.2.4	Numerical Results of Seepage Analysis for	
			Pure Smectitic Clay	223
		8.2.5	Three-dimensional Seepage Analysis of Sand	227
	8.3	A Perm	neability Theory for Multiscale Porous Media	230
		8.3.1	Multiscale Permeability Theory	231
		8.3.2	Seepage Analysis of Bentonite	238
9	Hom	ogenizat	tion Analysis of Diffusion in Porous Media	241
	9.1	-	inhomogeneous Porous Media and Diffusion Problems	241
	9.2		on Theory for Two-scale Porous Media	244
		9.2.1	HA for Diffusion Problems in Porous Media	244
		9.2.2	Simulation of a Through-diffusion Test	248
		9.2.3	HA Diffusion Equation with Higher	
			Order Derivatives	250
	9.3	Diffusi	on Problem for Multiscale Porous Media	253
		9.3.1	Multiscale HA for Diffusion Problems in	
			Porous Media	253
	9.4	Diffusi	vity of Compacted Bentonite Considering	
		Micro-	structure	257
		9.4.1	Experimental Data of Bentonite Diffusivity	257
		9.4.2	Microscale Problem of HA for Bentonite	259
	9.5	HA and	d Similitude for the Seepage/Diffusion Problem	264

xii Contents

10			Consolidation of Bentonite and a ion Analysis of the Flow Field	267		
	10.1		erm Consolidation Test on Bentonite	268		
	10.2		A Seepage Analysis and 1D Consolidation Theory	270		
		10.2.1	1D Finite Strain Consolidation Theory	271		
		10.2.2	Weak Form of the 1D Finite Strain			
		1012.2	Consolidation Equation	274		
		10.2.3	FEM for 1D Finite Strain Consolidation Equation	274		
		10.2.4	Relation Between Permeability and Void			
		10.2.1	Ratio for Compacted Bentonite	276		
		10.2.5	Consolidation Experiment and			
		10.2.5	Inhomogeneous 1D Analysis	279		
A	Intro	duction	to Vectors	283		
P1	A.1		$\sin \mathbb{R}^3$	283		
	A.1 A.2		roduct and the Length of Vectors	284		
	A.2 A.3		nate Transformation			
	A.3 A.4		Product	287		
_				289		
В		8				
	B.1		us of Partial Differentials			
	B.2		Green Theorem			
	B.3		Theorem and Exact Differentiability			
C			of Linear Vector Spaces			
	C.1		aic System			
	C.2		ar Vector Space $V = \{X, +, *\}$			
	C.3		nd Dimension			
	C.4		gical Spaces			
	C.5		Sequence and Complete Space			
	C.6		onals and Dual Space			
	C.7		Product and Tensor Space			
	C.8	On Co	mpleteness of Function Spaces			
		C.8.1	Sequence Space l^p			
		C.8.2	Completeness of l^p			
		C.8.3	Completeness of $C[a, b]$ Under the Norm $ x _{\infty}$	310		
		C.8.4	Bessel's Inequality and Parseval's Equality	31		
		C.8.5	Completeness of Fourier Basis $\{\phi_n\}$	313		
D			Chemical Thermodynamics			
	D.1		Conservation Law and Thermodynamic Systems	317		
	D.2		nce of Entropy and Thermal Energy: First Part	. 318		
		of the Second Law of Thermodynamics				
		D.2.1	Carnot Cycle			
		D.2.2	Entropy as a State Variable			

Contents xiii

	D .3	.3 Interpretation of Entropy within the Framework					
			stical Thermodynamics: Boltzmann's Theory 🌲	323			
		D.3.1	Statistical Representation of Molecular States				
			and Boltzmann Distribution	324			
		D.3.2	Molecular Partition Function q	325			
		D.3.3	Internal Energy and Entropy: Boltzmann's Formula	327			
	D.4	Entropy	y Production: Second Part of the Second Law of				
		Thermo	odynamics	331			
		D.4.1	Second Law of Thermodynamics for the				
			Irreversible Process	331			
		D.4.2	Entropy Production	332			
		D.4.3	Second Law of Thermodynamics and the				
			Minimum Energy Principle	336			
		D.4.4	Second Law of Thermodynamics in a Thermo-				
			mechanical Continuum: Eulerian Description	336			
E	Chen	nical Pro	ocesses and Classical Thermodynamics	339			
	E.1		Description of Thermodynamic Functions	339			
	E.2		f Reaction and Change of Enthalpy	342			
	E.3		e of Entropy	345			
	D .5	E.3.1	Progress of Chemical Reaction and	5 15			
		13.3.1	Change of Entropy	345			
		E.3.2	Affinity and Direction of Reaction	346			
		E.3.3	Change of Entropy and the Diffusion Process	348			
		E.3.4	Changes of Temperature/Pressure/Phase and Entropy	348			
	E.4		e of Gibbs Free Energy and Chemical Potential	350			
	E.5		odynamics of Gas	351			
	E.6	Diffusion Behavior of Solutions without					
		Inter-molecular Interaction					
		E.6.1	Chemical Potential	353 353			
		E.6.2	Diffusion Coefficient in an Ideal Solution:				
			Stokes-Einstein Equation	354			
		E.6.3	Diffusion Coefficient of Solute without				
			Inter-molecular Interaction	355			
	E.7	Diffusi	on Process in an Electrolyte Solution				
		E.7.1	Chemical Potential of Electrolyte Solute				
		E:7.2	Electrostatic Field due to Distributed Ions and				
			Activity Coefficient: Debye-Hückel Theory	358			
		E.7.3	Diffusion of Ionic Species in an Electrolyte Solution	361			
		E.7.4	Electric Conduction in an Electrolyte Solution	362			
	E.8	Chemi	cal Equilibrium and the Equilibrium Constant	364			
	E.9		menological Theory of Non-equilibrium				
			cal Reaction Processes	366			
		E.9.1	Reaction Velocity and Order of Reaction	366			
		E.9.2	Elementary Reaction and Complex Reaction	367			

E.9.3	Temperature Dependence of Reaction Rate:	
	Arrhenius Equation	370
E.9.4	Transition State Theory	371
References		
Index		379